Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks

Abstract

It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both ATM and ATR are required for IR-induced Chk1 phosphorylation.
Figure 2: ATM and Nbs1 are required for IR-induced ATR focus formation.
Figure 3: ATM and Nbs1 are required for IR-induced RPA focus formation.
Figure 4: Nuclease activity of Mre11 is required for IR-induced Chk1 phosphorylation and RPA focus formation.
Figure 5: Differential kinetics of recruitment and activation.
Figure 6: ATR recruitment, RPA focus formation and Chk1 phosphorylation are cell cycle regulated.
Figure 7: CDK activity is required for efficient IR-induced Chk1 phosphorylation and RPA-coated ssDNA generation.
Figure 8: Representation of IR-induced ATR activation and homologous recombination-mediated repair coordinated in an ATM and a cell cycle-dependent manner.

Similar content being viewed by others

References

  1. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  2. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  3. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  Google Scholar 

  4. Lee, J. H. & Paull, T. T. ATM Activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 Complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  5. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001).

    Article  CAS  Google Scholar 

  6. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  7. Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).

    Article  CAS  Google Scholar 

  8. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article  CAS  Google Scholar 

  9. Gatei, M. et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem. 278, 14806–14811 (2003).

    Article  CAS  Google Scholar 

  10. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  Google Scholar 

  11. Zhao, H. & Piwnica-Worms, H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol. Cell. Biol. 21, 4129–4139 (2001).

    Article  CAS  Google Scholar 

  12. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000).

    Article  CAS  Google Scholar 

  13. Buscemi, G. et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol. Cell. Biol. 15, 5214–5222 (2001).

    Article  Google Scholar 

  14. Tibbetts, R. S. et al. A role for ATR in the DNA damage induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    Article  CAS  Google Scholar 

  15. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Driscoll, M. et al. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  Google Scholar 

  17. Bao, S. et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411, 969–974 (2001).

    Article  CAS  Google Scholar 

  18. Post, S. et al. Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G1/S checkpoint activation in response to DNA damage. Proc. Natl Acad. Sci. USA 98, 13102–13107 (2001).

    Article  CAS  Google Scholar 

  19. Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  Google Scholar 

  20. Kim, S.-T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).

    Article  CAS  Google Scholar 

  21. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  22. D'Andrea, A. D. & Haseltine, W. A. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc. Natl Acad. Sci. USA 75, 3608–3612 (1978).

    Article  CAS  Google Scholar 

  23. Lim, D.-S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  Google Scholar 

  24. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000).

    Article  CAS  Google Scholar 

  25. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  Google Scholar 

  26. Lukas, C. et al. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  27. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999).

    Article  CAS  Google Scholar 

  28. Paull, T. T. & Gellert, M. The 3' to 5' exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

    Article  CAS  Google Scholar 

  29. Trujillo, K. M., Yuan, S.-S. F., Lee, E.-Y. P. & Sung, P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447–21450 (1998).

    Article  CAS  Google Scholar 

  30. Nakada, D., Hirano, Y. & Sugimoto, K. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway. Mol. Cell. Biol. 24, 10016–10025 (2004).

    Article  CAS  Google Scholar 

  31. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  32. Stracker, T. H., Carson, C. T. & Weitzman, M. D. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348–352 (2002).

    Article  CAS  Google Scholar 

  33. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).

    Article  CAS  Google Scholar 

  34. De Azevedo, W. F. et al. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518–526 (1997).

    Article  CAS  Google Scholar 

  35. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000).

    Article  CAS  Google Scholar 

  36. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000).

    Article  CAS  Google Scholar 

  37. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).

    Article  CAS  Google Scholar 

  38. Morrison, C. et al. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J. 19, 463–471 (2000).

    Article  CAS  Google Scholar 

  39. Yuan, S.-S. F., Chang, H.-L. & Lee, E. Y. Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM−/− and c-Abl−/− cells. Mutat. Res. 525, 85–92 (2003).

    Article  CAS  Google Scholar 

  40. Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003).

    Article  CAS  Google Scholar 

  41. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article  CAS  Google Scholar 

  42. Sorensen, C. S. et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nature Cell. Biol. 7, 195–201 (2005).

    Article  CAS  Google Scholar 

  43. Falck, J. et al. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet. 30, 290–294 (2002).

    Article  Google Scholar 

  44. Tsao, C. C., Geisen, C. & Abraham, R. T. Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling. EMBO J. 23, 4660–4669 (2004).

    Article  CAS  Google Scholar 

  45. Lukas, C. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 23, 2674–2683 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R.T. Abraham, R. Tsien and Y. Shiloh for providing valuable reagents and K. Dry for editorial help. This study was made possible by core infrastructure funding by Cancer Research UK and The Wellcome Trust, and was supported by Cancer Research UK, The AT Medical Research Trust, the Danish Cancer Society, the Danish National Research Foundation, the European Union Framework 6 Integrated Project Grant “DNA repair”, the European Science Foundation (EuroDYNA) and the John and Birthe Meyer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazayeri, A., Falck, J., Lukas, C. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8, 37–45 (2006). https://doi.org/10.1038/ncb1337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing