Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils

Abstract

Through their ability to regulate production of the key lipid messenger PtdIns(3,4,5)P3, the class I phosphatidylinositol-3-OH kinases (PI(3)Ks) support many critical cell responses1,2. They, in turn, can be regulated by cell-surface receptors through signals acting on either their adaptor subunits (for example, through phosphotyrosine or Gβγs) or their catalytic subunits (for example, through GTP-Ras). The relative significance of these controlling inputs is undefined in vivo. Here, we have studied the roles of Gβγs, the adaptor p101, Ras and the Ras binding domain (RBD) in the control of the class I PI(3)K, PI(3)Kγ, in mouse neutrophils. Loss of p101 leads to major reductions in the accumulation of PtdIns(3,4,5)P3, activation of protein kinase B (PKB) and in migration towards G-protein activating ligands in vitro, and to an aseptically inflamed peritoneum in vivo. Loss of sensitivity of PI(3)Kγ to Ras unexpectedly caused similar reductions, but additionally caused a substantial loss in production of reactive oxygen species (ROS). We conclude that Gβγs, p101 and the Ras–RBD interaction all have important roles in the regulation of PI(3)Kγ in vivo and that they can simultaneously, but differentially, control distinct PI(3)Kγ effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and distributions of PI(3)K subunits in neutrophils isolated from p101−/− and p110γDASAA/DASAA mice.
Figure 2: Accumulation of PtdIns(3,4,5)P3 is reduced in neutrophils isolated from p110γDASAA/DASAA (p110γD/D) and p101−/− mice.
Figure 3: Phosphorylation of Ser 473-PKB in response to chemoattractants is reduced in neutrophils from p101−/− and p110γDASAA/DASAA mice.
Figure 4: The migration of neutrophils from mice lacking p110γ or p101 or expressing p110γDASAA/DASAA is substantially reduced.
Figure 5: Production of ROS in response to chemoattractants is reduced in neutrophils from p110γDASAA/DASAA but not p101−/− mice.

Similar content being viewed by others

References

  1. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Suire, S. et al. p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr. Biol. 15, 566–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Voigt, P., Dorner, M. B. & Schaefer, M. Characterization of P87Pikap, a novel regulatory subunit of phosphoinositide 3-kinase γ that is highly expressed in heart and interacts with PDE3B. J. Biol. Chem. 231, 9977–9986 (2006).

    Article  Google Scholar 

  5. Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell Biol. 24, 4943–4954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krugmann, S., Cooper, M. A., Williams, D. H., Hawkins, P. T. & Stephens, L. R. Mechanism of the regulation of type IB phosphoinositide 3OH-kinase by G-protein βγ subunits. Biochem. J. 362, 725–731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krugmann, S., Eguinoa, A., McGregor, A. H., Hawkins, P. T. & Stephens, L. R. Structural analysis of a novel isoform of phosphoinositide 3OH-kinase. Biochem. Soc. Trans. 25, S604 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Brock, C. et al. Roles of Gβγ in membrane recruitment and activation of p110γ/p101 phosphoinositide 3-kinase γ. J. Cell Biol. 160, 89–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suire, S., Hawkins, P. & Stephens, L. Activation of phosphoinositide 3-kinase γ by Ras. Curr. Biol. 12, 1068–1075 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Simon, S. I. & Green, C. E. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu. Rev. Biomed. Eng. 7, 151–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sheppard, F. R. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78, 1025–1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Condliffe, A. M. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106, 1432–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hirsch, E. et al. Resistance to thromboembolism in PI3Kγ-deficient mice. FASEB J. 15, 2019–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Puri, K. D. et al. The role of endothelial PI3Kγ activity in neutrophil trafficking. Blood 106, 150–157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol. 10, 466–473 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wymann, M. P. & Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol. 17, 141–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas, M. J. et al. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur. J. Immunol. 35, 1283–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Coffer, P. J. et al. Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function. Biochem. J. 329, 121–130 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, L., Eckerdal, J., Dimitrijevic, I. & Andersson, T. Chemotactic peptide-induced activation of Ras in human neutrophils is associated with inhibition of p120-GAP activity. J. Biol. Chem. 272, 23448–23454 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Rooij, J. & Bos, J. L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Welch, H. C. et al. P-Rex1 regulates neutrophil function. Curr. Biol. 15, 1867–1873 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PI(3)Kγ mice were provided by M. Wymann. Thanks to M. Skynner for help in the initial isolation of p101 genomic clones and thanks also to T. Green for use of a blood-cell counter. Thanks to P. Arnaud for design of PCR primers and A. Segonds-Pichon for help with statistics. C.E. was a Beit fellow. A.M.C. was supported by a Wellcome Trust Intermediate fellowship. Different parts of this work were funded by grants from the Biotechnology and Biological Sciences Research council (BBSRC) and Cancer Research UK (CRUK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len Stephens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suire, S., Condliffe, A., Ferguson, G. et al. Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils. Nat Cell Biol 8, 1303–1309 (2006). https://doi.org/10.1038/ncb1494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing