Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation

Abstract

Many cellular proteins are post-translationally modified by the addition of a single ubiquitin or a polyubiquitin chain1. Among these are receptor tyrosine kinases (RTKs), which undergo ligand-dependent ubiquitination2. The ubiquitination of RTKs has become recognized as an important signal for their endocytosis and degradation in the lysosome3; however, it is not clear whether ubiquitination itself is sufficient for this process or simply participates in its regulation. The issue is further complicated by the fact that RTKs are thought to be polyubiquitinated — a modification that is linked to protein degradation by the proteasome4. By contrast, monoubiquitination has been associated with diverse proteasome-independent cellular functions including intracellular protein movement5. Here we show that the epidermal growth factor and platelet-derived growth factor receptors are not polyubiquitinated but rather are monoubiquitinated at multiple sites after their ligand-induced activation. By using different biochemical and molecular genetics approaches, we show that a single ubiquitin is sufficient for both receptor internalization and degradation. Thus, monoubiquitination is the principal signal responsible for the movement of RTKs from the plasma membrane to the lysosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monoubiquitination of EGFR and PDGFR in mammalian cells.
Figure 2: Multiple monoubiquitination of activated EGFR and PDGFR.
Figure 3: Internalization of EGFR–Ub chimaeras.
Figure 4: Endosomal sorting of monoubiquitinated EGFR for lysosomal degradation.

Similar content being viewed by others

References

  1. Weissman, A.M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  2. Thien, C.B. & Langdon, W.Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  Google Scholar 

  3. Waterman, H. & Yarden, Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett. 490, 142–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Pickart, C.M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  6. Stang, E., Johannessen, L.E., Knardal, S.L. & Madshus, I.H. Polyubiquitination of the epidermal growth factor receptor occurs at the plasma membrane upon ligand-induced activation. J. Biol. Chem. 275, 13940–13947 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. de Melker, A.A., van Der Horst, G., Calafat, J., Jansen, H. & Borst, J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J. Cell Sci. 114, 2167–2178 (2001).

    CAS  PubMed  Google Scholar 

  8. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Longva, K.E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Arnason, T. & Ellison, M.J. Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol. Cell. Biol. 14, 7876–7883 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haglund, K., Shimokawa, N., Szymkiewicz, I. & Dikic, I. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc. Natl Acad. Sci. USA 99, 12191–12196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winkler, M.E., O'Connor, L., Winget, M. & Fendly, B. Epidermal growth factor and transforming growth factor alpha bind differently to the epidermal growth factor receptor. Biochemistry 28, 6373–6378 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Petrelli, A. et al. The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416, 187–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y. & Dikic, I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Shih, S.C., Sloper-Mould, K.E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakatsu, F. et al. A Di-leucine signal in the ubiquitin moiety. Possible involvement in ubiquitination-mediated endocytosis. J. Biol. Chem. 275, 26213–26219 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Carbone, R. et al. Eps15 and Eps15R are essential components of the endocytic pathway. Cancer Res. 57, 5498–5504 (1997).

    CAS  PubMed  Google Scholar 

  23. Confalonieri, S., Salcini, A.E., Puri, C., Tacchetti, C. & Di Fiore, P.P. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J. Cell Biol. 150, 905–912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Cupers, P., ter Haar, E., Boll, W. & Kirchhausen, T. Parallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrate clone 15. J. Biol. Chem. 272, 33430–33434 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Shekhtman, A. & Cowburn, D. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem. Biophys. Res. Commun. 296, 1222–1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Vecchi, M. et al. Nucleocytoplasmic shuttling of endocytic proteins. J. Cell Biol. 153, 1511–1517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szymkiewicz, I. et al. CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J. Biol. Chem. 277, 39666–39672 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Di Fiore, P.P., Segatto, O., Taylor, W.G., Aaronson, S.A. & Pierce, J.H. EGF receptor and erbB-2 tyrosine kinase domains confer cell specificity for mitogenic signaling. Science 248, 79–83 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Schlessinger, G. Gill, C.-H. Heldin, A. Östman, N. Dantuma, K. Miyazano and T. Imamura for reagents. This work is supported by grants from the Italian Association for Cancer Research (AIRC), Telethon Foundation, European Community (VI Framework) and Human Science Frontier Program (to P.P.D.F.) and by grants from the Boehringer Ingelheim Fonds and Swedish Strategic Foundation (to I.D.). S.S. was supported by a fellowship from Fondazione Italiana Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pier Paolo Di Fiore or Ivan Dikic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1 Monoubiquitination of EGFR and PDGFR in several mammalian cell types. (PDF 102 kb)

Figure S2 Overexpression of Ub or MonoUb leads to enhanced ubiquitination of EGFR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haglund, K., Sigismund, S., Polo, S. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5, 461–466 (2003). https://doi.org/10.1038/ncb983

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing