Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-dimensional mutate-and-map strategy for non-coding RNA structure

Abstract

Non-coding RNAs fold into precise base-pairing patterns to carry out critical roles in genetic regulation and protein synthesis, but determining RNA structure remains difficult. Here, we show that coupling systematic mutagenesis with high-throughput chemical mapping enables accurate base-pair inference of domains from ribosomal RNA, ribozymes and riboswitches. For a six-RNA benchmark that has challenged previous chemical/computational methods, this ‘mutate-and-map’ strategy gives secondary structures that are in agreement with crystallography (helix error rates, 2%), including a blind test on a double-glycine riboswitch. Through modelling of partially ordered states, the method enables the first test of an interdomain helix-swap hypothesis for ligand-binding cooperativity in a glycine riboswitch. Finally, the data report on tertiary contacts within non-coding RNAs, and coupling to the Rosetta/FARFAR algorithm gives nucleotide-resolution three-dimensional models (helix root-mean-squared deviation, 5.7 Å) of an adenine riboswitch. These results establish a promising two-dimensional chemical strategy for inferring the secondary and tertiary structures that underlie non-coding RNA behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mutate-and-map method gives an information-rich picture of RNA structure.
Figure 2: Mutate-and-map data and secondary structure.
Figure 3: Comparison of chemical/computational modelling approaches on tRNAphe.
Figure 4: Accurate secondary structure models for non-coding RNAs.
Figure 5: Two states of a glycine-binding riboswitch.
Figure 6: Three-dimensional modelling from mutate-and-map data.

Similar content being viewed by others

References

  1. Yanofsky, C. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet. 20, 367–374 (2004).

    Article  CAS  Google Scholar 

  2. Winkler, W. C. & Breaker, R. R. Genetic control by metabolite-binding riboswitches. Chembiochem 4, 1024–1032 (2003).

    Article  CAS  Google Scholar 

  3. Zaratiegui, M., Irvine, D. V. & Martienssen, R. A. Noncoding RNAs and gene silencing. Cell 128, 763–776 (2007).

    Article  CAS  Google Scholar 

  4. Levitt, M. Detailed molecular model for transfer ribonucleic acid. Nature 224, 759–763 (1969).

    Article  CAS  Google Scholar 

  5. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  6. Lee, M. K., Gal, M., Frydman, L. & Varani, G. Real-time multidimensional NMR follows RNA folding with second resolution. Proc. Natl Acad. Sci. USA 107, 9192–9197 (2010).

    Article  CAS  Google Scholar 

  7. Wuthrich, K. NMR studies of structure and function of biological macromolecules (Nobel lecture). Angew. Chem. Int. Ed. 42, 3340–3363 (2003).

    Article  Google Scholar 

  8. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    Article  CAS  Google Scholar 

  9. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  Google Scholar 

  10. Byrne, R. T., Konevega, A. L., Rodnina, M. V. & Antson, A. A. The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res. 38, 4154–4162 (2010).

    Article  CAS  Google Scholar 

  11. Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91, 705–712 (1997).

    Article  CAS  Google Scholar 

  12. Smith, K. D., Lipchock, S. V., Livingston, A. L., Shanahan, C. A. & Strobel, S. A. Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch. Biochemistry 49, 7351–7359 (2010).

    Article  CAS  Google Scholar 

  13. Kulshina, N., Baird, N. J. & Ferre-D'Amare, A. R. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Struct. Mol. Biol. 16, 1212–1217 (2009).

    Article  CAS  Google Scholar 

  14. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685. (1996).

    Article  CAS  Google Scholar 

  15. Lemay, J. F., Penedo, J. C., Mulhbacher, J. & Lafontaine, D. A. Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches. Methods Mol. Biol. 540, 65–76 (2009).

    Article  CAS  Google Scholar 

  16. Das, R. et al. Structural inference of native and partially folded RNA by high-throughput contact mapping. Proc. Natl Acad. Sci. USA 105, 4144–4149 (2008).

    Article  CAS  Google Scholar 

  17. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004).

    Article  CAS  Google Scholar 

  18. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    Article  CAS  Google Scholar 

  19. Culver, G. M. & Noller, H. F. In vitro reconstitution of 30S ribosomal subunits using complete set of recombinant proteins. Methods Enzymol. 318, 446–460 (2000).

    Article  CAS  Google Scholar 

  20. Adilakshmi, T., Lease, R. A. & Woodson, S. A. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res. 34, e64 (2006).

    Article  Google Scholar 

  21. Wilkinson, K. A. et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 6, e96 (2008).

    Article  Google Scholar 

  22. Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. USA 101, 7287–7292 (2004).

    Article  CAS  Google Scholar 

  23. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  Google Scholar 

  24. Kladwang, W., VanLang, C. C., Cordero, P. & Das, R. Understanding the errors of SHAPE-directed RNA modeling. Biochemistry 50, 8049–8056 (2011).

    Article  CAS  Google Scholar 

  25. Quarrier, S., Martin, J. S., Davis-Neulander, L., Beauregard, A. & Laederach, A. Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16, 1108–1117 (2010).

    Article  CAS  Google Scholar 

  26. Kladwang, W. & Das, R. A mutate-and-map strategy for inferring base pairs in structured nucleic acids: proof of concept on a DNA/RNA helix. Biochemistry 49, 7414–7416 (2010).

    Article  CAS  Google Scholar 

  27. Cho, M. Coherent two-dimensional optical spectroscopy. Chem Rev 108, 1331–1418 (2008).

    Article  CAS  Google Scholar 

  28. Pyle, A. M., Murphy, F. L. & Cech, T. R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  Google Scholar 

  29. Duncan, C. D. & Weeks, K. M. SHAPE analysis of long-range interactions reveals extensive and thermodynamically preferred misfolding in a fragile group I intron RNA. Biochemistry 47, 8504–8513 (2008).

    Article  CAS  Google Scholar 

  30. Kladwang, W., Cordero, P. & Das, R. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17, 522–534 (2011).

    Article  CAS  Google Scholar 

  31. Shapiro, B. A., Yingling, Y. G., Kasprzak, W. & Bindewald, E. Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17, 157–165 (2007).

    Article  CAS  Google Scholar 

  32. Lemay, J. F., Penedo, J. C., Tremblay, R., Lilley, D. M. & Lafontaine, D. A. Folding of the adenine riboswitch. Chem. Biol. 13, 857–868 (2006).

    Article  CAS  Google Scholar 

  33. Rieder, R., Lang, K., Graber, D. & Micura, R. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. Chembiochem 8, 896–902 (2007).

    Article  CAS  Google Scholar 

  34. Lemay, J. F. et al. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet. 7, e1001278 (2011).

    Article  CAS  Google Scholar 

  35. Noeske, J. et al. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc. Natl Acad. Sci. USA 102, 1372–1377 (2005).

    Article  CAS  Google Scholar 

  36. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, 1998).

    Google Scholar 

  37. Wu, M. & Tinoco, I. Jr. RNA folding causes secondary structure rearrangement. Proc. Natl Acad. Sci. USA 95, 11555–11560 (1998).

    Article  CAS  Google Scholar 

  38. Vicens, Q., Gooding, A. R., Laederach, A. & Cech, T. R. Local RNA structural changes induced by crystallization are revealed by SHAPE. RNA 13, 536–548 (2007).

    Article  CAS  Google Scholar 

  39. Leontis, N. B. & Westhof, E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA 4, 1134–1153 (1998).

    Article  CAS  Google Scholar 

  40. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  Google Scholar 

  41. Lipfert, J. et al. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. J. Mol. Biol. 365, 1393–1406 (2007).

    Article  CAS  Google Scholar 

  42. Kwon, M. & Strobel, S. A. Chemical basis of glycine riboswitch cooperativity. RNA 14, 25–34 (2008).

    Article  CAS  Google Scholar 

  43. Butler, E. B., Xiong, Y., Wang, J. & Strobel, S. A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).

    Article  CAS  Google Scholar 

  44. Huang, L., Serganov, A. & Patel, D. J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).

    Article  CAS  Google Scholar 

  45. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  46. Hajdin, C. E., Ding, F., Dokholyan, N. V. & Weeks, K. M. On the significance of an RNA tertiary structure prediction. RNA 16, 1340–1349 (2010).

    Article  CAS  Google Scholar 

  47. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA–protein complexes. Nature Protoc. 2, 2608–2623 (2007).

    Article  CAS  Google Scholar 

  48. Nikolova, E. N. et al. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470, 498–502 (2011).

    Article  CAS  Google Scholar 

  49. Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010).

    Article  CAS  Google Scholar 

  50. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011).

    Article  CAS  Google Scholar 

  51. Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods 7, 291–294 (2010).

    Article  CAS  Google Scholar 

  52. Yoon, S. et al. HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27, 1798–1805 (2011).

    Article  CAS  Google Scholar 

  53. Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Laederach and J. Lucks for comments on the manuscript and the authors of RNAstructure for making their source code freely available. This work was supported by the Burroughs-Wellcome Foundation (CASI to R.D.), the National Institutes of Health (T32 HG000044 to C.C.V.) and a Stanford Graduate Fellowship (to P.C.).

Author information

Authors and Affiliations

Authors

Contributions

R.D. conceived and designed the experiments. W.K., C.C.V. and R.D. performed the experiments. C.C.V., P.C. and R.D. analysed the data. R.D. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rhiju Das.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kladwang, W., VanLang, C., Cordero, P. et al. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nature Chem 3, 954–962 (2011). https://doi.org/10.1038/nchem.1176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing