Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of G protein–coupled receptor–G protein interactions

Abstract

The interaction of G protein–coupled receptors (GPCRs) with heterotrimeric G proteins represents one of the most fundamental biological processes. However, the molecular architecture of the GPCR–G protein complex remains poorly defined. In the present study, we applied a comprehensive GPCR–G protein α subunit (Gα) chemical cross-linking strategy to map a receptor-Gα interface, both before and after agonist-induced receptor activation. Using the M3 muscarinic acetylcholine receptor (M3R)-Gαq system as a model system, we examined the ability of ~250 combinations of cysteine-substituted M3R and Gαq proteins to undergo cross-link formation. We identified many specific M3R-Gαq contact sites, in both the inactive and active receptor conformations, allowing us to draw conclusions regarding the basic architecture of the M3R-Gαq interface and the nature of the conformational changes following receptor activation. As heterotrimeric G proteins as well as most GPCRs share a high degree of structural homology, our findings should be of broad general relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction of cysteine substitutions into the M3R and Gαq.
Figure 2: Cross-linking of Gαq subunits containing C-terminal cysteine substitutions with cysteine-substituted mutant M3Rs.
Figure 3: Co-immunoprecipitation experiments confirming the identity of a representative Gαq–M3R complex.
Figure 4: Cross-link formation between a cysteine residue introduced into the αN helix of Gαq (R31C) and a cysteine residue substituted into the i2 loop of the M3R (L173C).
Figure 5: Agonist-induced cross-link formation between a cysteine residue introduced into the α4-β6 loop of Gαq (D321C) and cysteine residues substituted into the N-terminal segment of H8 of the M3R.
Figure 6: Molecular model of the M3R–Gq complex.

Similar content being viewed by others

References

  1. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lagerström, M.C. & Schiöth, H.B. Structural diversity of G protein–coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  PubMed  Google Scholar 

  3. Regard, J.B., Sato, I.T. & Coughlin, S.R. Anatomical profiling of G protein–coupled receptor expression. Cell 135, 561–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabrera-Vera, T.M. et al. Insights into G protein structure, function, and regulation. Endocr. Rev. 24, 765–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rasmussen, S.G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jaakola, V.P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W. & Ernst, O.P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Oldham, W.M. & Hamm, H.E. How do receptors activate G proteins? Adv. Protein Chem. 74, 67–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Oldham, W.M. & Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Johnston, C.A. & Siderovski, D.P. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol. Pharmacol. 72, 219–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wess, J. Molecular basis of receptor–G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hamm, H.E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Onrust, R. et al. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D. & Bourne, H.R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Cai, K., Itoh, Y. & Khorana, H.G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent cross-linking: use of a photoactivatable reagent. Proc. Natl. Acad. Sci. USA 98, 4877–4882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Itoh, Y., Cai, K. & Khorana, H.G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent cross-linking: use of a chemically preactivated reagent. Proc. Natl. Acad. Sci. USA 98, 4883–4887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston, C.A. & Siderovski, D.P. Structural basis for nucleotide exchange on Gαi subunits and receptor coupling specificity. Proc. Natl. Acad. Sci. USA 104, 2001–2006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wess, J. Molecular biology of muscarinic acetylcholine receptors. Crit. Rev. Neurobiol. 10, 69–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, F.Y., Hopp, A., Soldner, A. & Wess, J. Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. J. Biol. Chem. 274, 16629–16640 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cai, K. et al. Single-cysteine substitution mutants at amino acid positions 306–321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Biochemistry 38, 7925–7930 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ernst, O.P. et al. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin α and γ subunits. J. Biol. Chem. 275, 1937–1943 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Swift, S. et al. Role of the PAR1 receptor 8th helix in signaling: the 7–8-1 receptor activation mechanism. J. Biol. Chem. 281, 4109–4116 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Delos Santos, N.M., Gardner, L.A., White, S.W. & Bahouth, S.W. Characterization of the residues in helix 8 of the human β1-adrenergic receptor that are involved in coupling the receptor to G proteins. J. Biol. Chem. 281, 12896–12907 (2006).

    Article  PubMed  Google Scholar 

  28. Wedegaertner, P.B., Chu, D.H., Wilson, P.T., Levis, M.J. & Bourne, H.R. Palmitoylation is required for signaling functions and membrane attachment of Gqα and Gsα. J. Biol. Chem. 268, 25001–25008 (1993).

    CAS  PubMed  Google Scholar 

  29. Edgerton, M.D., Chabert, C., Chollet, A. & Arkinstall, S. Palmitoylation but not the extreme amino-terminus of Gqα is required for coupling to the NK2 receptor. FEBS Lett. 354, 195–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Chabre, O., Conklin, B.R., Brandon, S., Bourne, H.R. & Limbird, L.E. Coupling of the α2A-adrenergic receptor to multiple G-proteins. A simple approach for estimating receptor–G-protein coupling efficiency in a transient expression system. J. Biol. Chem. 269, 5730–5734 (1994).

    CAS  PubMed  Google Scholar 

  31. Spalding, T.A., Burstein, E.S., Brauner-Osborne, H., Hill-Eubanks, D. & Brann, M.R. Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J. Pharmacol. Exp. Ther. 275, 1274–1279 (1995).

    CAS  PubMed  Google Scholar 

  32. Li, J.H. et al. Distinct structural changes in a G protein–coupled receptor caused by different classes of agonist ligands. J. Biol. Chem. 282, 26284–26293 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Rebois, R.V. & Hébert, T.E. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 9, 169–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nobles, M., Benians, A. & Tinker, A. Heterotrimeric G proteins precouple with G protein–coupled receptors in living cells. Proc. Natl. Acad. Sci. USA 102, 18706–18711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galés, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 (2005).

    Article  PubMed  Google Scholar 

  36. Clark, M.A., Sethi, P.R. & Lambert, N.A. Active Gαq subunits and M3 acetylcholine receptors promote distinct modes of association of RGS2 with the plasma membrane. FEBS Lett. 581, 764–770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lohse, M.J. et al. Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol. Sci. 29, 159–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Moro, O., Lameh, J., Högger, P. & Sadée, W. Hydrophobic amino acid in the i2 loop plays a key role in receptor–G protein coupling. J. Biol. Chem. 268, 22273–22276 (1993).

    CAS  PubMed  Google Scholar 

  39. Wacker, J.L. et al. Disease-causing mutation in GPR54 reveals the importance of the second intracellular loop for class A G-protein-coupled receptor function. J. Biol. Chem. 283, 31068–31078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Eur. J. Biochem. 184, 687–698 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Ballesteros, J.A. & Weinstein, H. Integrated methods for modeling G-protein coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  42. Hubbell, W.L., Altenbach, C., Hubbell, C.M. & Khorana, H.G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 63, 243–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Altenbach, C., Kusnetzow, A.K., Ernst, O.P., Hofmann, K.P. & Hubbell, W.L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oldham, W.M., Van Eps, N., Preininger, A.M., Hubbell, W.L. & Hamm, H.E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Kapoor, N., Menon, S.T., Chauhan, R., Sachdev, P. & Sakmar, T.P. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J. Mol. Biol. 393, 882–897 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Javitch, J.A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol. 66, 1077–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G protein–coupled receptors. FEBS J. 272, 2914–2925 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases (US National Institutes of Health) and used the high-performance computational capabilities of the Biowulf Linux cluster at the US National Institutes of Health, Bethesda, Maryland, USA (http://biowulf.nih.gov).

Author information

Authors and Affiliations

Authors

Contributions

J.H. designed and conducted most of the biochemical experiments. Y.W., X.Z. and J.L. were involved in the pharmacological characterization of the mutant proteins. J.R.L. carried out the mass spectrometry studies. S.C. designed the molecular modeling studies. S.C. and J.K. carried out the molecular modeling studies. J.W. designed the experiments, and J.H., S.C. and J.W. wrote the paper.

Corresponding authors

Correspondence to Jianxin Hu or Jürgen Wess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 18079 kb)

Supplementary Data

Stand-alone supplementary data (PDB 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Wang, Y., Zhang, X. et al. Structural basis of G protein–coupled receptor–G protein interactions. Nat Chem Biol 6, 541–548 (2010). https://doi.org/10.1038/nchembio.385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing