Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling

Abstract

Morphine, a powerful analgesic, and norepinephrine, the principal neurotransmitter of sympathetic nerves, exert major inhibitory effects on both peripheral and brain neurons by activating distinct cell-surface G protein–coupled receptors—the μ-opioid receptor (MOR) and α2A-adrenergic receptor (α2A-AR), respectively. These receptors, either singly or as a heterodimer, activate common signal transduction pathways mediated through the inhibitory G proteins (Gi and Go). Using fluorescence resonance energy transfer microscopy, we show that in the heterodimer, the MOR and α2A-AR communicate with each other through a cross-conformational switch that permits direct inhibition of one receptor by the other with subsecond kinetics. We discovered that morphine binding to the MOR triggers a conformational change in the norepinephrine-occupied α2A-AR that inhibits its signaling to Gi and the downstream MAP kinase cascade. These data highlight a new mechanism in signal transduction whereby a G protein–coupled receptor heterodimer mediates conformational changes that propagate from one receptor to the other and cause the second receptor's rapid inactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of an association between MOR and α2A-AR.
Figure 2: Transconformational switching of the α2A-AR by the MOR as a mechanism underlying direct inhibition of receptor activation.
Figure 3: Inhibition of Gi protein activation by transconformational switches between MOR and α2A-AR.
Figure 4: Concentration-response relation for ligand-mediated phosphorylation of ERK1/2 in cells coexpressing α2A-ARFlAsH/CFP and MOR.
Figure 5: Molecular basis for G protein signaling in a GPCR heterocomplex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ernst, O.P. et al. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc. Natl. Acad. Sci. USA 104, 10859–10864 (2007).

    Article  CAS  Google Scholar 

  2. Whorton, M.R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  Google Scholar 

  3. Pin, J.-P. et al. Recommendation for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol. Rev. 59, 5–13 (2007).

    Article  CAS  Google Scholar 

  4. Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004).

    Article  CAS  Google Scholar 

  5. Meyer, B.H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103, 2138–2143 (2006).

    Article  CAS  Google Scholar 

  6. Kaupmann, K. et al. GABA (B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    Article  CAS  Google Scholar 

  7. Milligan, G. G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim. Biophys. Acta 1768, 825–835 (2007).

    Article  CAS  Google Scholar 

  8. Brock, C. et al. Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. J. Biol. Chem. 282, 33000–33008 (2007).

    Article  CAS  Google Scholar 

  9. Jordan, B.A. & Devi, L.A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    Article  CAS  Google Scholar 

  10. Rocheville, M. et al. Receptor for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    Article  CAS  Google Scholar 

  11. Milligan, G. & Smith, N.J. Allosteric modulation of heterodimeric G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 615–620 (2007).

    Article  CAS  Google Scholar 

  12. Jordan, B.A., Gomes, C., Rios, J., Filipovska, J. & Devi, L.A. Functional interaction between μ opioid and α2A-adrenergic receptors. Mol. Pharmacol. 64, 1317–1324 (2003).

    Article  CAS  Google Scholar 

  13. Spaulding, T., Fielding, S., Vanafro, J.J. & Lal, H. Antinociceptive activity of clonidine and its potentiation of morphine analgesia. Eur. J. Pharmacol. 58, 19–25 (1979).

    Article  CAS  Google Scholar 

  14. Wilcox, G.L., Carlsson, K.-H., Jochim, A. & Jurna, I. Mutual potentiation of antinociceptive effects of morphine and clonidine on motor and sensory responses in rat spinal cord. Brain Res. 405, 84–93 (1987).

    Article  CAS  Google Scholar 

  15. George, S.R., O'Dowd, B.F. & Lee, S.P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820 (2002).

    Article  CAS  Google Scholar 

  16. Franco, R. et al. Dimer-based model for heptaspanning membrane receptors. Trends Biochem. Sci. 30, 360–366 (2005).

    Article  CAS  Google Scholar 

  17. Vilardaga, J.-P., Bünemann, M., Krasel, C., Castro, M. & Lohse, M.J. A millisecond activation switch for G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    Article  CAS  Google Scholar 

  18. Bünemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003).

    Article  Google Scholar 

  19. Hoffmann, C. et al. A FLASH-based approach to determine G protein-coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    Article  CAS  Google Scholar 

  20. Nikolaev, V.O., Hoffmann, C., Bünemann, M., Lohse, M.J. & Vilardaga, J.-P. Molecular basis of partial agonism at the neurotransmitter α2A-adrenergic receptor and Gi-protein heterotrimer. J. Biol. Chem. 281, 24506–24511 (2006).

    Article  CAS  Google Scholar 

  21. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  22. Mercier, J.-F., Salahpopur, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  Google Scholar 

  23. Gether, U. Uncovering molecular mechanism involved in activation of G protein-coupled receptor. Endocr. Rev. 21, 90–113 (2000).

    Article  CAS  Google Scholar 

  24. Vilardaga, J.-P., Steinmeyer, R., Harms, G.S. & Lohse, M.J. Molecular basis of inverse agonism in a G protein-coupled receptor. Nat. Chem. Biol. 1, 25–28 (2005).

    Article  CAS  Google Scholar 

  25. Fuxe, K. et al. Intramemrane receptor-recepotor interactions: a novel principle in molecular medicine. J. Neural Transm. 114, 49–75 (2007).

    Article  CAS  Google Scholar 

  26. Pin, J.-P. et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J. 272, 2947–2955 (2005).

    Article  CAS  Google Scholar 

  27. Damian, M. et al. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  Google Scholar 

  28. Guo, W. et al. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc. Natl. Acad. Sci. USA 102, 17495–17500 (2005).

    Article  CAS  Google Scholar 

  29. Fotiadis, D. et al. Structure of the rhodopsin dimer: a working model for G-protein coupled receptor. Curr. Opin. Struct. Biol. 16, 252–259 (2006).

    Article  CAS  Google Scholar 

  30. Albizu, L. et al. Probing the existence of G protein coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol. Pharmacol. 70, 1783–1791 (2006).

    Article  CAS  Google Scholar 

  31. Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem. 280, 24380–24385 (2005).

    Article  CAS  Google Scholar 

  32. Springael, J.-Y. et al. Allosteric properties of G protein-coupled receptor oligomers. Pharmacol. Ther. 115, 410–418 (2007).

    Article  CAS  Google Scholar 

  33. Mesnier, D. & Banères, J.-L. Cooperative conformational changes in a G protein-coupled receptor dimer, the leukotriene B4 receptor BLT1. J. Biol. Chem. 279, 49664–49670 (2004).

    Article  CAS  Google Scholar 

  34. Urizar, E. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 24, 1954–1964 (2005).

    Article  CAS  Google Scholar 

  35. Banères, J.-L. & Parello, J. Structure-based analysis of GPCR function: Evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol. 329, 815–829 (2003).

    Article  Google Scholar 

  36. White, J.F. et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl. Acad. Sci. USA 104, 12199–12204 (2007).

    Article  CAS  Google Scholar 

  37. Vilardaga, J.-P., Di Paolo, E. & Bollen, A. Improved PCR method for high-efficiency site-directed mutagenesis using class 2S restriction enzymes. Biotechniques 18, 604–606 (1995).

    CAS  PubMed  Google Scholar 

  38. Hein, P. et al. Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 (2005).

    Article  CAS  Google Scholar 

  39. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Dess for technical support, M. Bünemann (University of Würzburg) for the plasmids encoding Gαi1YFP, Gβ1 and Gγ2CFP, and F. Ciruela (University of Barcelona) for the cDNA encoding A1RYFP. This research was supported by the Fonds der Chemischen Industrie and the Deutshe Forschungsgemeinschaft (SFB487, to M.J.L.), and the Department of Medicine of the Massachusetts General Hospital (to J.-P.V.).

Author information

Authors and Affiliations

Authors

Contributions

J.-P.V. designed, performed and supervised experiments and wrote the manuscript with support from M.J.L.; V.O.N. performed most of the experiments and analyzed data with J.-P.V.; K.L. performed and analyzed ERK1/2 assays; S.F. and Z.Z. contributed to experiments; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jean-Pierre Vilardaga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilardaga, JP., Nikolaev, V., Lorenz, K. et al. Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nat Chem Biol 4, 126–131 (2008). https://doi.org/10.1038/nchembio.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing