Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxysterols are allosteric activators of the oncoprotein Smoothened

Abstract

Oxysterols are a class of endogenous signaling molecules that can activate the Hedgehog pathway, which has critical roles in development, regeneration and cancer. However, it has been unclear how oxysterols influence Hedgehog signaling, including whether their effects are mediated through a protein target or indirectly through effects on membrane properties. To answer this question, we synthesized the enantiomer and an epimer of the most potent oxysterol, 20(S)-hydroxycholesterol. Using these molecules, we show that the effects of oxysterols on Hedgehog signaling are exquisitely stereoselective, consistent with the hypothesis that they function through a specific protein target. We present several lines of evidence that this protein target is the seven-pass transmembrane protein Smoothened, a major drug target in oncology. Our work suggests that these enigmatic sterols, which have multiple effects on cell physiology, may act as ligands for signaling receptors and provides a generally applicable framework for probing sterol signaling mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of Hedgehog signaling by oxysterols is regioselective.
Figure 2: Activation of Hedgehog signaling by nat-20(S)-OHC is stereoselective.
Figure 3: Distinct pharmacological interactions of Smo inhibitors with nat-20(S)-OHC.
Figure 4: Synergistic activation of Hedgehog signaling by nat-20(S)-OHC and SAG.
Figure 5: Smo binds a nat-20(S)-OHC analog immobilized on beads.
Figure 6: A model for the allosteric regulation of Smo by small molecules.

Similar content being viewed by others

References

  1. Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev. 22, 2454–2472 (2008).

    Article  CAS  Google Scholar 

  2. Murone, M., Rosenthal, A. & de Sauvage, F.J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    Article  CAS  Google Scholar 

  3. Stone, D.M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    Article  CAS  Google Scholar 

  4. Marigo, V. et al. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  Google Scholar 

  5. Barakat, M.T., Humke, E.W. & Scott, M.P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med. 16, 337–348 (2010).

    Article  CAS  Google Scholar 

  6. Cooper, M.K., Porter, J.A., Young, K.E. & Beachy, P.A. Teratogen-mediated inhibited of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  CAS  Google Scholar 

  7. Chen, J.K. et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  Google Scholar 

  8. Heretsch, P., Tzagkaroulaki, L. & Giannis, A. Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew. Chem. Int. Ed. Engl. 49, 3418–3427 (2010).

    Article  CAS  Google Scholar 

  9. Chen, J.K. et al. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  10. Sinha, S. & Chen, J.K. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29–30 (2006).

    Article  CAS  Google Scholar 

  11. Romer, J.T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice. Cancer Cell 6, 229–240 (2004).

    Article  CAS  Google Scholar 

  12. Corcoran, R.B. & Scott, M.P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. USA 103, 8408–8413 (2006).

    Article  CAS  Google Scholar 

  13. Dwyer, J.R. et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282, 8959–8968 (2007).

    Article  CAS  Google Scholar 

  14. Johnson, J.S. et al. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J. Cell Biochem. 112, 1673–1684 (2011).

    Article  CAS  Google Scholar 

  15. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  Google Scholar 

  16. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  Google Scholar 

  17. LeBlanc, M.A. & McMaster, C.R. Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-trans-Golgi trafficking pathways. J. Biol. Chem. 285, 33875–33884 (2010).

    Article  CAS  Google Scholar 

  18. Radhakrishnan, A. et al. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104, 6511–6518 (2007).

    Article  CAS  Google Scholar 

  19. Janowski, B.A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl. Acad. Sci. USA 96, 266–271 (1999).

    Article  CAS  Google Scholar 

  20. Chen, W. et al. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 5, 73–79 (2007).

    Article  CAS  Google Scholar 

  21. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  Google Scholar 

  22. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    Article  CAS  Google Scholar 

  23. Panini, S.R. & Sinensky, M.S. Mechanisms of oxysterol-induced apoptosis. Curr. Opin. Lipidol. 12, 529–533 (2001).

    Article  CAS  Google Scholar 

  24. Park, K. & Scott, A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88, 1081–1087 (2010).

    Article  CAS  Google Scholar 

  25. Theunissen, J.J. et al. Membrane properties of oxysterols. Interfacial orientation, influence on membrane permeability and redistribution between membranes. Biochim. Biophys. Acta 860, 66–74 (1986).

    Article  CAS  Google Scholar 

  26. Rentero, C. et al. Functional implications of plasma membrane condensation for T cell activation. PLoS ONE 3, e2262 (2008).

    Article  Google Scholar 

  27. Olkkonen, V.M. & Hynynen, R. Interactions of oxysterols with membranes and proteins. Mol. Aspects Med. 30, 123–133 (2009).

    Article  CAS  Google Scholar 

  28. Sasaki, H. et al. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997, 1313–1322 (1997).

    Google Scholar 

  29. Infante, R.E. et al. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem. 283, 1052–1063 (2008).

    Article  CAS  Google Scholar 

  30. Massey, J.B. & Pownall, H.J. Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Biochemistry 45, 10747–10758 (2006).

    Article  CAS  Google Scholar 

  31. Covey, D.F. ent-Steroids: novel tools for studies of signaling pathways. Steroids 74, 577–585 (2009).

    Article  CAS  Google Scholar 

  32. Mannock, D.A. et al. Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes. Biophys. J. 84, 1038–1046 (2003).

    Article  CAS  Google Scholar 

  33. Westover, E.J. et al. Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J. Biol. Chem. 278, 51125–51133 (2003).

    Article  CAS  Google Scholar 

  34. Gale, S.E. et al. Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions. J. Biol. Chem. 284, 1755–1764 (2009).

    Article  CAS  Google Scholar 

  35. Rominger, C.M. et al. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J. Pharmacol. Exp. Ther. 329, 995–1005 (2009).

    Article  CAS  Google Scholar 

  36. Kenakin, T.P. A Pharmacology Primer. 3rd edn. 101–147 (Elsevier, 2009).

  37. Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    Article  CAS  Google Scholar 

  38. Fitzgerald, J.B. et al. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2, 458–466 (2006).

    Article  CAS  Google Scholar 

  39. Rohatgi, R. et al. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. USA 106, 3196–3201 (2009).

    Article  CAS  Google Scholar 

  40. Töröcsik, D., Szanto, A. & Nagy, L. Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol. Aspects Med. 30, 134–152 (2009).

    Article  Google Scholar 

  41. Brown, A.J. Cholesterol, statins and cancer. Clin. Exp. Pharmacol. Physiol. 34, 135–141 (2007).

    Article  CAS  Google Scholar 

  42. Cooper, M.K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33, 508–513 (2003).

    Article  CAS  Google Scholar 

  43. Lin, Y.Y., Welch, M. & Lieberman, S. The detection of 20S-hydroxycholesterol in extracts of rat brains and human placenta by a gas chromatograph/mass spectrometry technique. J. Steroid Biochem. Mol. Biol. 85, 57–61 (2003).

    Article  CAS  Google Scholar 

  44. Mijares, A. et al. Studies on the C20 epimers of 20-hydroxycholesterol. J. Org. Chem. 32, 810–812 (1967).

    Article  CAS  Google Scholar 

  45. Ruprecht, J.J. et al. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609–3620 (2004).

    Article  CAS  Google Scholar 

  46. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  47. Roberts, K.D., Bandy, L. & Lieberman, S. The occurrence and metabolism of 20 alpha-hydroxycholesterol in bovine adrenal preparations. Biochemistry 8, 1259–1270 (1969).

    Article  CAS  Google Scholar 

  48. Lütjohann, D. et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. USA 93, 9799–9804 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Rohatgi lab for helpful discussions, G. Luchetti for help with ligand affinity chromatography, P. Niewiadomski and A. Lebensohn for critical reading of the manuscript, E. Lee (Vanderbilt University) for Wnt-L cells, K. Mykytyn (Ohio State University) for the SSTR3-GFP and HTR6-GFP constructs, A. Sweet-Cordero for use of a Li-Cor Odyssey imager and M. Scott for support and use of a confocal microscope. MS analysis was conducted at the NIH – National Center for Research Resources MS facility at Washington University, supported by the NIH (RR00954, DK020579, DK056341). This work was supported by a Pew Scholar Award and an Innovation Research Grant from the Stand Up to Cancer – American Association for Cancer Research Foundation to R.R., by NIH grants to D.F.C. (GM47969 and HL67773) and P.H.S. (HL67773), and by NIH training grants to S.N. (5 T32 GM007276) and L.K.M. (5 T32 HL007275).

Author information

Authors and Affiliations

Authors

Contributions

L.K.M., K.K. and D.F.C. designed and synthesized the oxysterol analogs. S.N. performed cellular experiments with oxysterols. J.R. and P.H.S. designed and performed vesicle expansion experiments. All authors analyzed the data and contributed to the manuscript. S.N. and R.R. wrote the paper with input from L.K.M., D.F.C., J.R. and P.H.S.

Corresponding authors

Correspondence to Douglas F Covey or Rajat Rohatgi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 4954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtergaele, S., Mydock, L., Krishnan, K. et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 8, 211–220 (2012). https://doi.org/10.1038/nchembio.765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing