Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene encoding phosphodiesterase 4D confers risk of ischemic stroke

A Corrigendum to this article was published on 01 May 2005

Abstract

We previously mapped susceptibility to stroke to chromosome 5q12. Here we finely mapped this locus and tested it for association with stroke. We found the strongest association in the gene encoding phosphodiesterase 4D (PDE4D), especially for carotid and cardiogenic stroke, the forms of stroke related to atherosclerosis. Notably, we found that haplotypes can be classified into three distinct groups: wild-type, at-risk and protective. We also observed a substantial disregulation of multiple PDE4D isoforms in affected individuals. We propose that PDE4D is involved in the pathogenesis of stroke, possibly through atherosclerosis, which is the primary pathological process underlying ischemic stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of PDE4D isoforms in affected individuals and controls.
Figure 2: Single-marker allelic association within PDE4D.
Figure 3: LD and haplotypes at the 5′ end of PDE4D.
Figure 4: Haplotype association for carotid and cardiogenic stroke combined.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sacco, R.L. et al. American Heart Association Prevention Conference. IV. Prevention and Rehabilitation of Stroke. Risk factors. Stroke 28, 1507–1517 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Bonita, R. Epidemiology of stroke. Lancet 339, 342–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Caplan, L.R. Caplan's Stroke: A Clinical Approach. (Butterworth-Heinemann, Boston, 2000).

    Google Scholar 

  4. Adams, H.P. Jr. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24, 35–41 (1993).

    Article  PubMed  Google Scholar 

  5. Fisher, C.M. Lacunar strokes and infarcts: a review. Neurology 32, 871–876 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Alberts, M.J. Genetics of Cerebrovascular Disease (Futura, New York, 1999).

    Google Scholar 

  7. Hassan, A. & Markus, H.S. Genetics and ischaemic stroke. Brain 123, 1784–1812 (2000).

    Article  PubMed  Google Scholar 

  8. Leys, D. et al. Stroke prevention: management of modifiable vascular risk factors. J. Neurol. 249, 507–517 (2002).

    Article  PubMed  Google Scholar 

  9. Brass, L.M. & Alberts, M.J. The genetics of cerebrovascular disease. Baillieres Clin. Neurol. 4, 221–245 (1995).

    CAS  PubMed  Google Scholar 

  10. Tournier-Lasserve, E. et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 3, 256–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Palsdottir, A. et al. Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet 2, 603–604 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Gunel, M., Awad, I.A., Anson, J. & Lifton, R.P. Mapping a gene causing cerebral cavernous malformation to 7q11.2–q21. Proc. Natl. Acad. Sci. USA 92, 6620–6624 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laberge-le Couteulx, S. et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 23, 189–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Sahoo, T. et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum. Mol. Genet. 8, 2325–2333 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Gretarsdottir, S. et al. Localization of a susceptibility gene for common forms of stroke to 5q12. Am. J. Hum. Genet. 70, 593–603 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terwilliger, J.D. & Ott, J. A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum. Hered. 42, 337–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Falk, C.T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51 (Pt 3), 227–233 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Houslay, M.D. & Adams, D.R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 370, 1–18 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, H. & Maurice, D.H. Phosphorylation-mediated activation and translocation of the cyclic AMP- specific phosphodiesterase PDE4D3 by cyclic AMP-dependent protein kinase and mitogen-activated protein kinases. A potential mechanism allowing for the coordinated regulation of PDE4D activity and targeting. J. Biol. Chem. 274, 10557–10565 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, H. et al. Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways. A potential mechanism allowing for the coordinated regulation of PDE4D activity and expression in cells. J. Biol. Chem. 275, 26615–26624 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Baillie, G., MacKenzie, S.J. & Houslay, M.D. Phorbol 12-myristate 13-acetate triggers the protein kinase A-mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol. Pharmacol. 60, 1100–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, S.L. & Conti, M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. Proc. Natl. Acad. Sci. USA 99, 7628–7633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Landells, L.J. et al. Identification and quantification of phosphodiesterase 4 subtypes in CD4 and CD8 lymphocytes from healthy and asthmatic subjects. Br. J. Pharmacol. 133, 722–729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukumoto, S. et al. Distinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells: cGMP delays cell cycle transition through suppression of cyclin D1 and cyclin-dependent kinase 4 activation. Circ. Res. 85, 985–991 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa, S. et al. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. Am. J. Physiol. 262, C546–C554 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Stelzner, T.J., Weil, J.V. & O'Brien, R.F. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J. Cell Physiol. 139, 157–166 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Pan, X., Arauz, E., Krzanowski, J.J., Fitzpatrick, D.F. & Polson, J.B. Synergistic interactions between selective pharmacological inhibitors of phosphodiesterase isozyme families PDE III and PDE IV to attenuate proliferation of rat vascular smooth muscle cells. Biochem. Pharmacol. 48, 827–835 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Palmer, D., Tsoi, K. & Maurice, D.H. Synergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors. Circ. Res. 82, 852–861 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Indolfi, C. et al. Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nat. Med. 3, 775–779 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Indolfi, C. et al. 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo. J. Am. Coll. Cardiol. 36, 288–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Tilley, S.L., Coffman, T.M. & Koller, B.H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. 108, 15–23 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vicini, E. & Conti, M. Characterization of an intronic promoter of a cyclic adenosine 3′,5′-monophosphate (cAMP)-specific phosphodiesterase gene that confers hormone and cAMP inducibility. Mol. Endocrinol. 11, 839–850 (1997).

    CAS  PubMed  Google Scholar 

  35. Le Jeune, I.R., Shepherd, M., Van Heeke, G., Houslay, M.D. & Hall, I.P. Cyclic AMP-dependent transcriptional up-regulation of phosphodiesterase 4D5 in human airway smooth muscle cells. Identification and characterization of a novel PDE4D5 promoter. J. Biol. Chem. 277, 35980–35989 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Gulcher, J.R., Kristjansson, K., Gudbjartsson, H. & Stefansson, K. Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, X., Zehnbauer, B., Gnirke, A. & Kwok, P.Y. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc. Natl. Acad. Sci. USA 94, 10756–10761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Risch, N. & Teng, J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 8, 1273–1288 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Rice, J.A. Generalized likelihood ratio tests. in Mathematical Statistics and Data Analysis 308–310 (International Thomson Publishing, Belmont, California, 1995).

    Google Scholar 

  40. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B Stat. Med. 39, 1–38 (1971).

    CAS  Google Scholar 

  41. Lewontin, R. The interaction of selection and linkage I. General considerations: Heterotic models. Genetics 49, 49–67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hill, W.G. & Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 22, 226–231 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families whose contribution made this study possible and the nurses at the Icelandic Heart Association, staff at the deCODE core facilities and V. Brophy and S. Cheng for their valuable contribution to this work. Enquiries regarding information and accessibility of the haplotype analysis program NEMO should be addressed to A.K. (augustine.kong@decode.is) or D.G. (daniel.gudbjartsson@decode.is).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Solveig Gretarsdottir or Jeffrey R Gulcher.

Ethics declarations

Competing interests

Some authors (S. Gretarsdottir, G. Thorleifsson, S. T. Reynisdottir, A. Manolescu, S. Jonsdottir, T. Jonsdottir, T. Gudmundsdottir, S. M. Bjarnadottir, O. B. Einarsson, H. M. Gudjonsdottir, M. Hawkins, G. Gudmundsson, H. Gudmundsdottir, H. Andrason, A. S. Gudmundsdottir, M. Sigurdardottir, T. T. Chou, J. Nahmias, S. Goss, M. Gurney, D. Gudbjartsson, M. L. Frigge, A. Kong, K. Stefansson & J. R. Gulcher) are employed by deCODE genetics, and some of them own stock options in the company.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gretarsdottir, S., Thorleifsson, G., Reynisdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 35, 131–138 (2003). https://doi.org/10.1038/ng1245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing