Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome

Abstract

Individuals with primary trimethylaminuria exhibit a body odour reminiscent of rotting fish, due to excessive excretion of trimethylamine (TMA; refs 1–3). The disorder, colloquially known as fish-odour syndrome, is inherited recessively as a defect in hepatic N-oxidation of dietary-derived TMA4–6 and cannot be considered benign, as sufferers may display a variety of psychosocial reactions, ranging from social isolation to clinical depression and attempted suicide6. TMA oxidation is catalyzed by flavin-containing mono-oxygenase (FMO; refs 7,8), and tissue localization9,10 and functional studies11 have established FMO3 as the form most likely to be defective in fish-odour syndrome. Direct sequencing of the coding exons of FMO3 amplified from a patient with fish-odour syndrome identified two missense mutations. Although one of these represented a common polymorphism, the other, a C→T transition in exon 4, was found only in an affected pedigree, in which it segregated with the disorder. The latter mutation predicts a proline→leucine substitution at residue 153 and abolishes FMO3 catalytic activity. Our results indicate that defects in FMO3 underlie fish-odour syndrome and that the Pro153→Leu153 mutation described here is a cause of this distressing condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitchell, S.C. The fish-odour syndrome. Perspect. Biol. Med. 39, 514–526 (1996).

    Article  CAS  Google Scholar 

  2. Shelley, E.D. & Shelley, W.D. The fish-odor syndrome: trimethylaminuria. JAMA 251,253–255 (1984).

    Article  CAS  Google Scholar 

  3. Spellacy, E., Watts, R.W.E. & Gollamali, S.K. . Trimethylaminuria. J. Inherited Metab. Dis. 2, 85–88 (1979).

    Article  Google Scholar 

  4. al-Waiz, M., Ayesh, R., Mitchell, S.C, Idle, J.R., & Smith, R.L . Trimethylaminuria (fish-odour syndrome): an inborn error of oxidative metabolism. Lancet I. 634–635 (1987).

    Article  Google Scholar 

  5. al-Waiz, M., Ayesh, R., Mitchell, S.C., Idle, J.R., & Smith, R.L. . Trimethylaminuria (‘fish-odour syndrome’): a study of an affected family. Clin. Sci. 74, 231–236 (1988).

    Article  CAS  Google Scholar 

  6. Ayesh, R., Mitchell, S.C., Zhang, A. & Smith, R.L. The fish-odour syndrome: biochemical, familial and clinical aspects. Br. Med. J. 307, 655–657 (1993).

    Article  CAS  Google Scholar 

  7. Gut, I. & Conney, A.M., N-oxygenation and N-demethylation in rat livermicrosomes. Biochem. Pharmacol. 46, 239–244 (1993).

    Article  CAS  Google Scholar 

  8. Ziegler, D.M. Flavin-containing monooxygenases: enzymes adapted for multisubstrate specificity. Trends Pharmacol. Sci. 11, 321–324 (1990).

    Article  CAS  Google Scholar 

  9. Phillips, I.R. et al. The molecular biology of the flavin-containing monooxygenases of man. Chem.-Biol. Interact. 96, 17–32 (1995).

    Article  CAS  Google Scholar 

  10. Dolphin, C.T., Cullingford, T.E., Shephard, E.A., Smith, R.L. & Phillips, I.R. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FMO4. Eur. J. Biochem. 235, 683–689 (1996).

    Article  CAS  Google Scholar 

  11. Lomri, N., Yang, Z. & Cashman, J.R. Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity. Chem. Res. Toxicol. 6, 425–429 (1993).

    Article  CAS  Google Scholar 

  12. Lawton, M.P. et al. A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities. Arch. Biochem. Biophys. 308, 254–257 (1994).

    Article  CAS  Google Scholar 

  13. al-Waiz, M., Ayesh, R., Mitchell, S.C., Idle, J.R., & Smith, R.L. . Disclosure of the metabolic retroversion of trimethylamine N-oxide in humans: a pharmacogenetic approach. Clin. Pharm. Ther. 42, 608–612 (1987).

    Article  CAS  Google Scholar 

  14. Shephard, E.A. et al. Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q. Genomics. 16, 85–89 (1993).

    Article  CAS  Google Scholar 

  15. Dolphin, C.T., Riley, J.R., Smith, R.L., Shephard, E.A. & Phillips, I.R. Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Genomics. (in the press).

  16. Itagaki, K., Carver, G.T. & Philpot, R.M. Expression and characterization of a modified flavin-containing monooxygenase 4 from humans. J. Biol. Chem. 271, 20102–20107 (1996).

    Article  CAS  Google Scholar 

  17. Wierenga, R.K., Terpstra, P. & Hoi, W.G.J. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins using an amino acid sequence fingerprint. J. Mol. Biol. 187, 101–107 (1986).

    Article  CAS  Google Scholar 

  18. Overby, L.H. et al. Characterization of flavin-containing monooxygenase 5 (FMO5) cloned from human and guinea pig: evidence that the unique catalytic properties of FMO5 are not confined to the rabbit ortholog. Arch. Biochem. Biophys. 317, 275–284 (1995).

    Article  CAS  Google Scholar 

  19. Suh, J.K., Poulsen, L.L., Ziegler, D.M. & Robertus, J.D. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae . Arch. Biochem. Biophys. 336, 268–274 (1996).

    Article  CAS  Google Scholar 

  20. Chen, Y.C.J., Peoples, O.P. & Walsh, C.T. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination. J. Bacteriol. 170, 781–789 (1988).

    Article  CAS  Google Scholar 

  21. Tutic, M., Lu, X., Schirmer, R.H. & Werner, D. Cloning and sequencing of mammalian glutathione reductase cDNA. Eur. J. Biochem. 188, 523–528 (1990).

    Article  CAS  Google Scholar 

  22. Greer, S. & Perham, R.N. Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry. 25, 2736–2742 (1986).

    Article  CAS  Google Scholar 

  23. Laddaga, R.A., Chu, L., Misra, T.K. & Silver, S. Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pl258. Proc. Natl. Acad. Sci. USA. 84, 5106–5110 (1987).

    Article  CAS  Google Scholar 

  24. Aboagye-Kwarteng, T., Smith, K. & Fairlamb, A.M. Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism. Mol. Microbiol. 6, 3089–3099 (1992).

    Article  CAS  Google Scholar 

  25. Ayesh, R. et al. Deficient nicotine N-oxidation in two sisters with trimethylaminuria. Br. J. Clin. Pharmacol. 25, P664–P665 (1988).

    Google Scholar 

  26. Park, S.B., Jacob, P.J., Benowitz, N.L. & Cashman, J.R. Stereoselective metabolism of (s)–(−)-nicotine in humans: formation of trans-(S)–(−)-nicotine N 1′-oxide. Chem. Res. Toxicol. 6, 880–888 (1993).

    Article  CAS  Google Scholar 

  27. Murray, V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 17, 8889 (1989).

    Article  CAS  Google Scholar 

  28. Higuchi, R.G. & Ochman, H. Production of single-stranded DNA templates by exonuclease treatment following the polymerase chain reaction. Nucleic Acids Res. 17, 5865 (1989).

    Article  CAS  Google Scholar 

  29. Lake, B.C. Preparation and characterisation of microsomal fractions for studies of xenobiotic metabolism. in Biochemical Toxicology: A Practical Approach (eds Snell, K. & Mullock, B.) 183–215 (IRL, Oxford, 1987).

    Google Scholar 

  30. Dixit, A. & Roche, T.E. Spectrophotometric assay of the flavin-containing monooxygenase and changes in its activity in female mouse liver with nutritional and diurnal conditions. Arch. Biochem. Biophys. 233, 50–63 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolphin, C., Janmohamed, A., Smith, R. et al. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17, 491–494 (1997). https://doi.org/10.1038/ng1297-491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-491

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing