Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution

Abstract

The classical (two-round) hypothesis1 of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged2,3,4,5,6,7. As the debate largely concerns the relative merits of the 'big-bang mode' theory8,9,10,11,12,13 (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications)2,3,4,5,6,7,14, we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications15, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree of major vertebrate groups.
Figure 2: Molecular evolutionary analysis of the stimulating-hormone receptor gene family.
Figure 3: Age distribution of human gene families.
Figure 4: Robustness of the age distribution of human paralogous genes.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, London, 1970).

    Book  Google Scholar 

  2. Hughes, A.L. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J. Mol. Evol. 48, 565–576 (1999).

    Article  CAS  Google Scholar 

  3. Wolfe, K.H. Yesterday's polyploids and the mystery of diploidization. Nature Rev Genet 2, 333–341 (2001).

    Article  CAS  Google Scholar 

  4. Meyer, A. & Schartl, M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699–704 (1999).

    Article  CAS  Google Scholar 

  5. Martin, A. Is tetralogy true? Lack of support for the 'one-to-four rule'. Mol. Biol. Evol. 18, 89–93 (2001).

    Article  CAS  Google Scholar 

  6. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  7. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  8. Nadeau, J.H. & Sankoff, D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147, 1259–1266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hughes, A.L., da Silva, J . & Friedman, R. Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res. 11, 771–780 (2001).

    Article  CAS  Google Scholar 

  10. Schughart, K., Kappen, C. & Ruddle, F.H. Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc. Natl Acad. Sci. USA 86, 7067–7071 (1989).

    Article  CAS  Google Scholar 

  11. Wang, Y. & Gu, X. Evolutionary patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol. 51, 88–96 (2000).

    Article  CAS  Google Scholar 

  12. Lundin, L.G. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19 (1993).

    Article  CAS  Google Scholar 

  13. Lopreato, G.F. et al. Evolution and divergence of sodium channel genes in vertebrates. Proc. Natl Acad. Sci. USA 98, 7588–7592 (2001).

    Article  CAS  Google Scholar 

  14. Spring, J. Vertebrate evolution by interspecific hybridization—are we polyploid? FEBS Lett. 400, 2–8 (1997).

    Article  CAS  Google Scholar 

  15. Eichler, E.E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

    Article  CAS  Google Scholar 

  16. Sidow, A. Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6, 715–722 (1996).

    Article  CAS  Google Scholar 

  17. Li, W.H., Gu, Z., Wang, H. & Nekrutenko, A. Evolutionary analyses of the human genome. Nature 409, 847–849 (2001).

    Article  CAS  Google Scholar 

  18. Nei, M., Gu, X. & Stinikova, T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl Acad. Sci. USA. 94, 7799–7806 (1997).

    Article  CAS  Google Scholar 

  19. McLysaght, A., Hokamp, K. & Wolfe, K.H. Extensive genomic duplication during early chordate evolution. Nature Genet. 31, 200–204 (2002); advance online publication, 28 May 2002 (DOI:10.1038/ng884).

    Article  CAS  Google Scholar 

  20. Fishman, M.C. Genomics. Zebrafish—the canonical vertebrate. Science 294, 1290–1291 (2001).

    Article  CAS  Google Scholar 

  21. Iwabe, N., Kuma, K. & Miyata, T. Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specific genes in the early evolution of chordates. Mol. Biol. Evol. 13, 483–493 (1996).

    Article  CAS  Google Scholar 

  22. Nikoh, N. et al. An estimate of divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. J. Mol. Evol. 45, 97–106 (1997).

    Article  CAS  Google Scholar 

  23. Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  Google Scholar 

  24. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  25. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  26. Gu, X. Early metazoan divergence was about 830 million years ago. J. Mol. Evol. 47, 369–371 (1998).

    Article  CAS  Google Scholar 

  27. Kumar, S. & Hedges, S.B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  CAS  Google Scholar 

  28. Nei, M., Xu, P. & Glazko, G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA 98, 2497–2502 (2001).

    Article  CAS  Google Scholar 

  29. Takezaki, N., Rzhetsky, A. & Nei, M. Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12, 823–833 (1995).

    CAS  PubMed  Google Scholar 

  30. Long, M. et al. Gene duplication and evolution [Technical Comments]. Science 293, 1551 (2001).

Download references

Acknowledgements

We thank W.H. Li and W. Nordstrom for their comments. This study is supported by an NIH grant to X.G. X.G. is the 2001 DuPont Young Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Wang, Y. & Gu, J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 31, 205–209 (2002). https://doi.org/10.1038/ng902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing