Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of amino acid residues crucial for chemokine receptor dimerization

Abstract

Chemokines coordinate leukocyte trafficking by promoting oligomerization and signaling by G protein–coupled receptors; however, it is not known which amino acid residues of the receptors participate in this process. Bioinformatic analysis predicted that Ile52 in transmembrane region-1 (TM1) and Val150 in TM4 of the chemokine receptor CCR5 are key residues in the interaction surface between CCR5 molecules. Mutation of these residues generated nonfunctional receptors that could not dimerize or trigger signaling. In vitro and in vivo studies in human cell lines and primary T cells showed that synthetic peptides containing these residues blocked responses induced by the CCR5 ligand CCL5. Fluorescence resonance energy transfer showed the presence of preformed, ligand-stabilized chemokine receptor oligomers. This is the first description of the residues involved in chemokine receptor dimerization, and indicates a potential target for the modification of chemokine responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural model of CCR5 dimer association.
Figure 2: I52V and V150A point mutations in CCR5 abrogate receptor function.
Figure 3: CCL5 does not trigger CCR5mut dimerization.
Figure 4: Synthetic peptides containing Ile52 and Val150 block CCR5 dimerization.
Figure 5: Synthetic peptides containing Ile52 and Val150 block CCR5-induced responses.

Similar content being viewed by others

References

  1. Mackay, C.R. Chemokines: immunology's high impact factors. Nat. Immunol. 2, 95–101 (2001).

    Article  CAS  Google Scholar 

  2. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  Google Scholar 

  3. Mellado, M., Rodríguez-Frade, J.M., Mañes, S. & Martínez-A., C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Ann. Rev. Immunol. 19, 397–421 (2001).

    Article  CAS  Google Scholar 

  4. Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002).

    Article  CAS  Google Scholar 

  5. Hebert, T.E. et al. A peptide derived from a β2-adrenergic receptor transmembrane inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996).

    Article  CAS  Google Scholar 

  6. Zeng, F.Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 274, 19487–19497 (1999).

    Article  CAS  Google Scholar 

  7. Kaupmann, K et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    Article  CAS  Google Scholar 

  8. Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J. 20, 2152–2159 (2001).

    Article  CAS  Google Scholar 

  9. Milligan, G. Oligomerization of G-protein-coupled receptors. J. Cell Sci. 114, 1265–1271 (2002).

    Google Scholar 

  10. Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151 (2000).

    CAS  PubMed  Google Scholar 

  11. White, J.H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682 (1998).

    Article  CAS  Google Scholar 

  12. Filizola, M. & Weinstein, H. Structural models for dimerization of G-protein coupled receptors: the opioid receptor homodimers. Biopolymers 66, 317–325 (2002).

    Article  CAS  Google Scholar 

  13. Benkirane, M., Jin, D.Y., Chun, R.F., Koup, R.A. & Jeang, K.T. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32. J. Biol. Chem. 272, 30603–30606 (1997).

    Article  CAS  Google Scholar 

  14. Issafras, H. et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J. Biol. Chem. 277, 34666–34673 (2002).

    Article  CAS  Google Scholar 

  15. Babcock, G.J., Farzan, M. & Sodroski, J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 278, 3378–3385 (2003).

    Article  CAS  Google Scholar 

  16. Blanpain, C. et al. Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies. Mol. Biol. Cell 13, 723–737 (2002).

    Article  CAS  Google Scholar 

  17. Rodríguez-Frade, J.M., Mellado, M. & Martínez-A., C. Chemokine receptor dimerization: two are better than one. Trends Immunol. 22, 612–617 (2001).

    Article  Google Scholar 

  18. Mellado, M. et al. Chemokine receptor homo- or hetero-dimerization activates distinct signaling pathways. EMBO J. 20, 2497–2507 (2001).

    Article  CAS  Google Scholar 

  19. Vila-Coro, A.J. et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl. Acad. Sci. USA 97, 3388–3393 (2000).

    Article  CAS  Google Scholar 

  20. Gobel, U., Sander, C., Schneider, R. & Valencia, A. Correlated mutations and residue contacts in proteins. Proteins 18, 309–317 (1994).

    Article  CAS  Google Scholar 

  21. Pazos, F. & Valencia, A. In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47, 219–227 (2002).

    Article  CAS  Google Scholar 

  22. Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nat. Struct. Biol. 2, 171–178 (1995).

    Article  CAS  Google Scholar 

  23. del Sol Mesa, A., Pazos, F. & Valencia, A. Automatic methods for predicting functionally important residues. J. Mol. Biol. 326, 1289–1302 (2003).

    Article  CAS  Google Scholar 

  24. Manes, S. et al. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220 (1999).

    Article  CAS  Google Scholar 

  25. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141: 929–942 (1998).

    Article  CAS  Google Scholar 

  26. Kenworthy, A.K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–296 (2001).

    Article  CAS  Google Scholar 

  27. Gordon, G.W., Berry, G., Liang, X.H., Levine, B. & Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).

    Article  CAS  Google Scholar 

  28. Bastiaens, P.I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).

    Article  CAS  Google Scholar 

  29. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  Google Scholar 

  30. Desai, D.M., Newton, M.E., Kadlecek, T. & Weiss A. Stimulation of the phosphatidylinositol pathway can induce T-cell activation. Nature 348,66–69 (1990).

    Article  CAS  Google Scholar 

  31. Klemm, J.D., Schreiber, S.L. & Crabtree, G.R. Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

    Article  CAS  Google Scholar 

  32. Devi, L. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharm. Sci. 22, 532–537 (2001).

    Article  CAS  Google Scholar 

  33. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrinol. Rev. 21, 90–113 (2000).

    Article  CAS  Google Scholar 

  34. Ghanouni, P., Steenhuis, J.J., Farrens, D.L. & Kobilka, B.K. Agonist-induced conformational changes in the G protein-coupling domain of the β2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002 (2001).

    Article  CAS  Google Scholar 

  35. Ri, Y. et al. The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys J. 76, 2887–2889 (1999).

    Article  CAS  Google Scholar 

  36. Govaerts, C. et al. The TXP motif in the second transmembrane helix of CCR5. J. Biol. Chem. 276, 13217–13225 (2001).

    Article  CAS  Google Scholar 

  37. Soriano, S.F. et al. Chemokines integrate JAK/STAT and G protein pathways during chemotaxis and calcium flux responses. Eur. J. Immunol. 33, 1328–1333 (2003).

    Article  CAS  Google Scholar 

  38. Onuffer, J.J. & Horuk R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharm. Sci. 23, 459–467 (2002).

    Article  CAS  Google Scholar 

  39. Tarasova, N.I., Rice, W.G. & Michejda, C.J. Inhibition of G-protein-coupled receptor function by disruption transmembrane domain interactions. J. Biol. Chem. 274, 34911–34915 (1999).

    Article  CAS  Google Scholar 

  40. Dragic, T. et al. A binding pocket for small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl. Acad. Sci. USA 97, 5639–5644 (2000).

    Article  CAS  Google Scholar 

  41. Mirzadegan, T et al. Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists. J. Biol. Chem. 275, 25562–25571 (2000).

    Article  CAS  Google Scholar 

  42. Horn, F. et al. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 31, 294–297 (2003).

    Article  CAS  Google Scholar 

  43. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  Google Scholar 

  44. Filizola, M., Olmea, O. & Weinstein, H. Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Protein Eng. 15, 881–885 (2002).

    Article  CAS  Google Scholar 

  45. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  46. Katchalski-Katzir, E. et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992).

    Article  CAS  Google Scholar 

  47. Vakser, I.A. & Jiang, S. Strategies for modeling the interactions of transmembrane helices of G protein-coupled receptors by geometric complementarity using the GRAMM computer algorithm. Methods Enzymol. 343, 313–328 (2002).

    Article  Google Scholar 

  48. Pazos, F., Helmer-Citterich, M., Ausiello, G. & Valencia, A. Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271, 511–523 (1997).

    Article  CAS  Google Scholar 

  49. Gong, X. et al. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. J. Biol. Chem. 272, 11682–11685 (1997).

    Article  CAS  Google Scholar 

  50. Mellado, M. et al. The chemokine MCP-1 triggers tyrosine phosphorylation of the CCR2B receptor and the JAK2/STAT3 pathway. J. Immunol. 161, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  51. Gausepohl, H. et al. Automated multiple peptide synthesis. Peptide Res. 5, 315–320 (1992).

    CAS  Google Scholar 

  52. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  Google Scholar 

  53. Gu, C., Cali, J.J. & Cooper, D.M. Dimerization of mammalian adenylate cyclases. Eur. J. Biochem. 269, 413–421 (2002).

    Article  CAS  Google Scholar 

  54. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence resonance energy transfer (FRET) microscopy. Biophys. J. 81, 2395–4028 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.P. Albar for peptide synthesis, J. Gutiérrez for chemokine receptor transfectants, M.C. Moreno-Ortíz for help with FACS analysis, and C. Bastos and C. Mark for secretarial and editorial assistance, respectively. Partially supported by grants from the Spanish Comisión Interministerial de Ciencia y Technología and from the Ministry of Health. The Department of Immunology and Oncology was founded and is supported by the Spanish Council for Scientific Research (CSIC) and by Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Martínez-A.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernanz-Falcón, P., Rodríguez-Frade, J., Serrano, A. et al. Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5, 216–223 (2004). https://doi.org/10.1038/ni1027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing