Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction

Abstract

Human Toll-like receptor (TLR) 3 recognizes double-stranded (ds) RNA and induces production of interferon (IFN)-β independent of the adaptor molecules MyD88 and TIRAP. Thus, another adaptor must exist that preferentially mediates TLR3-dependent production of IFN-β. We have identified an alternative adaptor, designated Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule (TICAM)-1, that can physically bind the TIR domain of TLR3 and activate the IFN-β promoter in response to poly(I):poly(C). Thus, dsRNA-TLR3–dependent production of IFN-β is mediated mainly by TICAM-1. This TICAM-1–dependent pathway may have a role in other TLR–IFN-β pathways, which form part of the MyD88-independent cellular immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR3-mediated IFN-β activation is MyD88- and TIRAP-independent.
Figure 2: Molecular cloning and distribution of TICAM-1.
Figure 3: TICAM-1 associates with TLR3.
Figure 4: TICAM-1 overexpression activates NF-κB and IFN-β promoters.
Figure 5: TICAM-1 activates AP-1 and IRF-3.
Figure 6: TICAM-1–mediated signaling links to production of IFN-β.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fearon, D.T. Seeking wisdom in innate immunity. Nature 388, 323–324 (1997).

    Article  Google Scholar 

  2. Medzhitov, R., Preston-Hurburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  3. Imler, J.L. & Hoffmann, J.A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).

    Article  CAS  Google Scholar 

  4. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  5. Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F.A. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  Google Scholar 

  6. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  7. O'Neill, L.A. & Dinarello, C.A. The IL-1 receptor-Toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  Google Scholar 

  8. Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293, 1364–1369 (2002).

    Article  CAS  Google Scholar 

  9. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  10. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  11. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  Google Scholar 

  12. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    Article  CAS  Google Scholar 

  13. Horng, T., Barton, G.M. & Medzhitov, R. TIRAP: an adaptor molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841 (2001).

    Article  CAS  Google Scholar 

  14. Fitzgerald, K.A. et al. Mal (MyD88-adaptor-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  Google Scholar 

  15. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  Google Scholar 

  16. Horng, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  Google Scholar 

  17. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1 α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    Article  CAS  Google Scholar 

  18. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  19. Muzio, M., Ni, J., Feng, P. & Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  Google Scholar 

  20. Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K. & Akira, S. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 5688–5694 (2001).

    Article  CAS  Google Scholar 

  21. Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).

    Article  CAS  Google Scholar 

  22. Uehori, J. et al. Simultaneous blocking of human Toll-like receptor 2 and 4 suppresses myeloid dendritic cell maturation induced by Mycobacterium bovis BCG-peptidoglycan. Infect. Immun. (in the press).

  23. Peters, K.L., Smith, H.L., Stark, G.R. & Sen, G.C. IRF-3-dependent, NF-κB- and JNK-independent activation of the 561 and IFN-β genes in response to double-stranded RNA. Proc. Natl. Acad. Sci. USA 99, 6322–6327 (2002).

    Article  CAS  Google Scholar 

  24. Yang, Y.-L. et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995).

    Article  CAS  Google Scholar 

  25. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  Google Scholar 

  26. Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388 (2001).

    Article  CAS  Google Scholar 

  27. Patel, R.C. & Sen, G.C. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390 (1998).

    Article  CAS  Google Scholar 

  28. Chu, W.M. et al. JNK2 and IKKβ are required for activating the innate response to viral infection. Immunity 11, 721–731 (1999).

    Article  CAS  Google Scholar 

  29. Maggi, L.B., Jr. et al. Potential role of PKR in double-stranded RNA-induced macrophage activation. EMBO J. 19, 3630–3638 (2000).

    Article  CAS  Google Scholar 

  30. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  Google Scholar 

  31. Muzio, M. et al. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998–6004 (2000).

    Article  CAS  Google Scholar 

  32. Cario, E. & Podolsky, D.K. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    Article  CAS  Google Scholar 

  33. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  34. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1, 533–540 (2000).

    Article  CAS  Google Scholar 

  35. Hazeki, K. et al. TLR-mediated tyrosine phosphorylation of paxillin via MyD88-dependent and -independent pathways. Eur. J. Immunol. (in the press).

  36. Cella, M. et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189, 821–829 (1999).

    Article  CAS  Google Scholar 

  37. Kadowaki, M. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–870 (2001).

    Article  CAS  Google Scholar 

  38. Nishiguchi, M. et al. Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions. J. Immunol. 166, 2610–2616 (2001).

    Article  CAS  Google Scholar 

  39. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  40. Sherman, F., Fink, G.R. & Hicks, J.B. Methods in Yeast Genetics (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1986).

    Google Scholar 

  41. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Means, T.K. et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  43. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  44. Oshiumi, H., Begum, N.A., Matsumoto, M. & Seya, T. RNA interference for mammalian cells. Nippon Yakurigaku Zasshi 120, 91–95 (2002).

    Google Scholar 

Download references

Acknowledgements

We thank D.T. Fearon, Y. Murakami and N. Inoue for critical reading of the manuscript; T. Taniguchi and T. Fujita for providing p-125 luc reporter plasmid and anti–IRF-3 Ab, respectively; and S. Akira and K. Miyake for providing MyD88−/− mice and an expression vector for MD-2. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture (Scientific Research on Priority Areas), and the Ministry of Health and Welfare, of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Seya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshiumi, H., Matsumoto, M., Funami, K. et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat Immunol 4, 161–167 (2003). https://doi.org/10.1038/ni886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing