Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Blockade of PDGFR-β activation eliminates morphine analgesic tolerance

Abstract

For centuries, opioid drugs have been the mainstay of chronic pain treatment. However, over time analgesic tolerance develops, leaving few treatment options. Here we show that platelet-derived growth factor receptor-β (PDGFR-β)-mediated signaling plays a key role in morphine tolerance. PDGFR-β inhibition selectively eliminates morphine tolerance in rats. PDGFR-β inhibitors are widely used and well tolerated, suggesting that clinical translation of our findings could reduce the suffering endured by individuals with intractable pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphine activates the PDGFR-β, and PDGFR-β inhibition blocks tolerance.
Figure 2: Imatinib reverses morphine tolerance, and its effects are mediated by PDGFR-β.

Similar content being viewed by others

References

  1. Valenzuela, C.F. et al. J. Biol. Chem. 271, 16151–16159 (1996).

    Article  CAS  Google Scholar 

  2. Trujillo, K.A. & Akil, H. Science 251, 85–87 (1991).

    Article  CAS  Google Scholar 

  3. Rice, A.S.C. & Hill, R.G. Annu. Rev. Med. 57, 535–551 (2006).

    Article  CAS  Google Scholar 

  4. Chen, C., Farooqui, M. & Gupta, K. Curr. Neurovasc. Res. 3, 171–180 (2006).

    Article  CAS  Google Scholar 

  5. Belcheva, M.M., Szucs, M., Wang, D., Sadee, W. & Coscia, C.J. J. Biol. Chem. 276, 33847–33853 (2001).

    Article  CAS  Google Scholar 

  6. Dai, H., Marbach, P., Lemaire, M., Hayes, M. & Elmquist, W.F. J. Pharmacol. Exp. Ther. 304, 1085–1092 (2003).

    Article  CAS  Google Scholar 

  7. Gold, L.H., Stinus, L., Inturrisi, C.E. & Koob, G.F. Eur. J. Pharmacol. 253, 45–51 (1994).

    Article  CAS  Google Scholar 

  8. Gutstein, H. & Akil, H. in Goodman & Gilman's The Pharmacological Basis of Therapeutics (eds. Brunton, L., Lazo, J. & Parker, K.) 547–590 (McGraw-HIll, New York, 2006).

  9. Aghajanian, G.K. & Wang, Y.Y. Neuropharmacology 26, 793–799 (1987).

    Article  CAS  Google Scholar 

  10. Karaman, M.W. et al. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  11. Herrlich, A. et al. Proc. Natl. Acad. Sci. USA 95, 8985–8990 (1998).

    Article  CAS  Google Scholar 

  12. Kolesnikov, Y., Jain, S., Wilson, R. & Pasternak, G.W. J. Pharmacol. Exp. Ther. 284, 455–459 (1998).

    CAS  PubMed  Google Scholar 

  13. Malmberg, A.B. & Yaksh, T.L. Pain 54, 291–300 (1993).

    Article  CAS  Google Scholar 

  14. Coderre, T.J. & Van Empel, I. Pain 59, 345–352 (1994).

    Article  CAS  Google Scholar 

  15. Black, M.J., Woo, Y. & Rane, S.G. J. Neurosci. Res. 74, 23–36 (2003).

    Article  CAS  Google Scholar 

  16. Timpe, L.C. & Fantl, W.J. J. Neurosci. 14, 1195–1201 (1994).

    Article  CAS  Google Scholar 

  17. Williams, J.T., Christie, M. & Manzoni, O. Physiol. Rev. 81, 299–343 (2001).

    Article  CAS  Google Scholar 

  18. Frace, A.M. & Gargus, J.J. Proc. Natl. Acad. Sci. USA 86, 2511–2515 (1989).

    Article  CAS  Google Scholar 

  19. Andrae, J., Gallini, R. & Betsholtz, C. Genes Dev. 22, 1276–1312 (2008).

    Article  CAS  Google Scholar 

  20. Gingras, A.C., Raught, B. & Sonenberg, N. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Dulin, T. Sylvester and C. Schultz for technical support. This work was funded by grants from the US National Institute on Drug Abuse R01DA15146 and the US National Institute on Alcohol Abuse and Alcoholism R01AA16157 to H.B.G. We dedicate this work to the memory of our colleague and dear friend Bing Mo, who tragically passed away before these studies were completed.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., K.B., S.S., M.D. and B.M. performed experiments and analyzed data. H.B.G. conceived and designed all experiments, interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Howard B Gutstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Methods (PDF 1478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Barker, K., Shi, S. et al. Blockade of PDGFR-β activation eliminates morphine analgesic tolerance. Nat Med 18, 385–387 (2012). https://doi.org/10.1038/nm.2633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing