Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia

Abstract

Opioid pain medications have detrimental side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). Tolerance and OIH counteract opioid analgesia and drive dose escalation. The cell types and receptors on which opioids act to initiate these maladaptive processes remain disputed, which has prevented the development of therapies to maximize and sustain opioid analgesic efficacy. We found that μ opioid receptors (MORs) expressed by primary afferent nociceptors initiate tolerance and OIH development. RNA sequencing and histological analysis revealed that MORs are expressed by nociceptors, but not by spinal microglia. Deletion of MORs specifically in nociceptors eliminated morphine tolerance, OIH and pronociceptive synaptic long-term potentiation without altering antinociception. Furthermore, we found that co-administration of methylnaltrexone bromide, a peripherally restricted MOR antagonist, was sufficient to abrogate morphine tolerance and OIH without diminishing antinociception in perioperative and chronic pain models. Collectively, our data support the idea that opioid agonists can be combined with peripheral MOR antagonists to limit analgesic tolerance and OIH.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MORs are required for morphine antinociceptive tolerance and OIH, but are not expressed by spinal microglia.
Figure 2: Conditional deletion of MORs from primary afferent nociceptors does not alter nociceptive behavior or reduce systemic morphine antinociception.
Figure 3: Conditional deletion of MORs from TRPV1 nociceptors prevents the onset of morphine antinociceptive tolerance and OIH.
Figure 4: Opioid-induced spinal LTP is initiated by presynaptic MORs in nociceptors.
Figure 5: Pharmacological blockade of peripheral MORs by MNB dose dependently prevents the onset of morphine antinociceptive tolerance and OIH.
Figure 6: Combination therapy of morphine and MNB delivers long-lasting antinociception, without the onset of tolerance, during perioperative and chronic pain states.

Similar content being viewed by others

References

  1. Carroll, I.R., Angst, M.S. & Clark, J.D. Management of perioperative pain in patients chronically consuming opioids. Reg. Anesth. Pain Med. 29, 576–591 (2004).

    Article  PubMed  Google Scholar 

  2. Kalso, E., Edwards, J.E., Moore, R.A. & McQuay, H.J. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain 112, 372–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Simon, L.S. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. J. Pain Palliative Care Pharmacother. 26, 197–198 (2012).

    Article  Google Scholar 

  4. Volkow, N.D. & McLellan, A.T. Opioid abuse in chronic pain–misconceptions and mitigation strategies. N. Engl. J. Med. 374, 1253–1263 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Chu, L.F., Angst, M.S. & Clark, D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin. J. Pain 24, 479–496 (2008).

    Article  PubMed  Google Scholar 

  6. Angst, M.S. & Clark, J.D. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104, 570–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Collett, B.J. Opioid tolerance: the clinical perspective. Br. J. Anaesth. 81, 58–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Matthes, H.W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Mansour, A., Fox, C.A., Akil, H. & Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 18, 22–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat. Neurosci. 16, 183–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y. et al. Blockade of PDGFR-β activation eliminates morphine analgesic tolerance. Nat. Med. 18, 385–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christie, M.J. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br. J. Pharmacol. 154, 384–396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rivat, C. & Ballantyne, J. The dark side of opioids in pain management: basic science explains clinical observation. Pain Rep. 1, e570 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roeckel, L.-A., Le Coz, G.-M., Gavériaux-Ruff, C. & Simonin, F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 338, 160–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Trang, T. et al. Pain and poppies: the good, the bad, and the ugly of opioid analgesics. J. Neurosci. 35, 13879–13888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghavendra, V., Tanga, F.Y. & DeLeo, J.A. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29, 327–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Watkins, L.R., Hutchinson, M.R., Rice, K.C. & Maier, S.F. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol. Sci. 30, 581–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kao, S.-C. Absence of μ opioid receptor mRNA expression in astrocytes and microglia of rat spinal cord. Neuroreport 23, 378–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hutchinson, M.R. et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 24, 83–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Mattioli, T.A. et al. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence. PLoS One 9, e97361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukagawa, H., Koyama, T., Kakuyama, M. & Fukuda, K. Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J. Anesth. 27, 93–97 (2013).

    Article  PubMed  Google Scholar 

  22. Mao, J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain 100, 213–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Joseph, E.K., Reichling, D.B. & Levine, J.D. Shared mechanisms for opioid tolerance and a transition to chronic pain. J. Neurosci. 30, 4660–4666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruscheweyh, R., Wilder-Smith, O., Drdla, R., Liu, X.-G. & Sandkühler, J. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. Mol. Pain 7, 20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reichling, D.B. & Levine, J.D. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 32, 611–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heinke, B., Gingl, E. & Sandkühler, J. Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J. Neurosci. 31, 1313–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drdla, R., Gassner, M., Gingl, E. & Sandkuhler, J. Induction of synaptic long-term potentiation after opioid withdrawal. Science 325, 207–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, H.-Y.Y., Chen, S.-R.R., Chen, H. & Pan, H.-L.L. Opioid-induced long-term potentiation in the spinal cord is a presynaptic event. J. Neurosci. 30, 4460–4466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, S.R., Prunean, A., Pan, H.M., Welker, K.L. & Pan, H.L. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 145, 676–685 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Scherrer, G. et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137, 1148–1159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Pasternak, G.W. Opioids and their receptors: are we there yet? Neuropharmacology 76 Part B, 198–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Cavanaugh, D.J. et al. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 31, 10119–10127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kemp, T., Spike, R.C., Watt, C. & Todd, A.J. The μ-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience 75, 1231–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Heinl, C., Drdla-Schutting, R., Xanthos, D.N. & Sandkühler, J. Distinct mechanisms underlying pronociceptive effects of opioids. J. Neurosci. 31, 16748–16756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, Y.L., Chen, S.R., Chen, H. & Pan, H.L. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J. Biol. Chem. 287, 25073–25085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russell, J., Bass, P., Goldberg, L.I., Schuster, C.R. & Merz, H. Antagonism of gut, but not central effects of morphine with quaternary narcotic antagonists. Eur. J. Pharmacol. 78, 255–261 (1982).

    Article  CAS  PubMed  Google Scholar 

  38. Stiene-Martin, A., Zhou, R. & Hauser, K.F. Regional, developmental and cell-cycle-dependent differences in mu, delta, and kappa-opioid receptor expression among cultured mouse astrocytes. Glia 22, 249–259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turchan-Cholewo, J. et al. Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J. Neurosci. Res. 86, 2100–2110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horvath, R.J., Romero-Sandoval, E.A. & De Leo, J.A. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and μ opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150, 401–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caldeira, C. et al. Microglia change from a reactive to an age-like phenotype with the time in culture. Front. Cell. Neurosci. 8, 152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foo, L.C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. et al. Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice. Neurosci. Lett. 489, 43–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Guan, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Kronschläger, M.T. et al. Gliogenic LTP spreads widely in nociceptive pathways. Science 354, 1144–1148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He, S.Q. et al. Tolerance develops to the antiallodynic effects of the peripherally acting opioid loperamide hydrochloride in nerve-injured rats. Pain 154, 2477–2486 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, L.H., Hedegaard, H. & Warner, M. Drug-poisoning deaths involving opioid analgesics: United States, 1999–2011. NCHS Data Brief 166, 1–8 (2014).

    Google Scholar 

  49. Thomas, J. et al. Methylnaltrexone for opioid-induced constipation in advanced illness. N. Engl. J. Med. 358, 2332–2343 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, C.S. et al. Safety and efficacy of methylnaltrexone in shortening the duration of postoperative ileus following segmental colectomy: results of two randomized, placebo-controlled phase 3 trials. Dis. Colon Rectum 54, 570–578 (2011).

    Article  PubMed  Google Scholar 

  51. Webster, L.R. et al. Analysis of opioid-mediated analgesia in Phase III studies of methylnaltrexone for opioid-induced constipation in patients with chronic noncancer pain. J. Pain Res. 8, 771–780 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poelaert, J. et al. Treatment with prolonged-release oxycodone/naloxone improves pain relief and opioid-induced constipation compared with prolonged-release oxycodone in patients with chronic severe pain and laxative-refractory constipation. Clin. Ther. 37, 784–792 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Jagla, C., Martus, P. & Stein, C. Peripheral opioid receptor blockade increases postoperative morphine demands--a randomized, double-blind, placebo-controlled trial. Pain 155, 2056–2062 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Zacny, J.P., Wroblewski, K. & Coalson, D.W. Methylnaltrexone: its pharmacological effects alone and effects on morphine in healthy volunteers. Psychopharmacology (Berl.) 232, 63–73 (2015).

    Article  CAS  Google Scholar 

  55. Rosow, C.E. et al. Reversal of opioid-induced bladder dysfunction by intravenous naloxone and methylnaltrexone. Clin. Pharmacol. Ther. 82, 48–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Stein, C. et al. Peripheral mechanisms of pain and analgesia. Brain Res. Rev. 60, 90–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Corder, G. et al. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341, 1394–1399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weibel, R. et al. μ opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One 8, e74706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorge, R.E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11, 629–632 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Mogil, J.S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woolf, C.J. Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain 18, 325–343 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Rescorla, R.A. Pavlovian conditioned fear in Sidman avoidance learning. J. Comp. Physiol. Psychol. 65, 55–60 (1968).

    Article  CAS  PubMed  Google Scholar 

  64. Blanchard, R.J. & Blanchard, D.C. Passive and active reactions to fear-eliciting stimuli. J. Comp. Physiol. Psychol. 68, 129–135 (1969).

    Article  CAS  PubMed  Google Scholar 

  65. Bolles, R.C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).

    Article  Google Scholar 

  66. Bolles, R.C. & Fanselow, M.S. A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–301 (1980).

    Article  Google Scholar 

  67. Fanselow, M.S. The postshock activity burst. Anim. Learn. Behav. 10, 448–454 (1982).

    Article  Google Scholar 

  68. Darwin, C. The Expression of The Emotions in Man and Animals (Albemarle, 1872).

  69. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M. & Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Solway, B., Bose, S.C., Corder, G., Donahue, R.R. & Taylor, B.K. Tonic inhibition of chronic pain by neuropeptide Y. Proc. Natl. Acad. Sci. USA 108, 7224–7229 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bardoni, R. et al. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81, 1312–1327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bennett, G.J. & Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Wall, P.D. et al. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7, 103–111 (1979).

    Article  CAS  PubMed  Google Scholar 

  79. Terrando, N. et al. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol. Med. 20, 667–675 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Kieffer (McGill University) for providing the Oprm1 floxed mice and MOR-mCherry mice, C. Evans (University of California, Los Angeles) and F. Simonin (Université de Strasbourg) for providing critical immunohistochemical and pharmacological reagents, J. Kaslow and A. Yu-Chun Wong for assistance with data analysis, and H. Nguyen (Stanford University) for assistance with illustration design. This work was supported by US National Institutes of Health (NIH) grant DA031777 (G.S.), the Rita Allen Foundation and American Pain Society Award in Pain (G.S.), NIH Fellowships F32DA041029 (G.C.), T32GM089626 (D.W.), and T32DA35165 (G.C.), Foundation for Anesthesia Education and Research (FAER) Mentored Research Training grant (V.L.T.), DoD National Defense Science and Engineering Graduate (NDSEG) Fellowship (E.I.S.), NSF Graduate Research Fellowship and Stanford Bio-X Graduate Fellowship (J.R.D.), NIH grant R37DA15043 (B.A.B.), and Damon Runyon Cancer Research Foundation postdoctoral fellowship (C.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

G.C. and J.R.D. performed behavioral pharmacology. G.C., V.L.T., D.W., E.I.S., S.A.L. and C.S. performed histology. D.W. performed spinal cord slice electrophysiology. E.I.S., C.J.B. and B.A.B. designed and performed RNA transcriptome sequencing. J.D.C. provided critical input on study design and interpretation. G.C., V.L.T., D.W., E.I.S., J.R.D. and G.S. designed studies and wrote the manuscript. G.S., G.C., V.L.T. and D.W. conceived the project, and G.S. supervised all experiments. All of the authors contributed to data analysis, interpretation and editing of the manuscript.

Corresponding author

Correspondence to Grégory Scherrer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Notes

Supplementary Figures 1–13 and Supplementary Notes 1–5 (PDF 19691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corder, G., Tawfik, V., Wang, D. et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23, 164–173 (2017). https://doi.org/10.1038/nm.4262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4262

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing