Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cardiotoxicity of the cancer therapeutic agent imatinib mesylate

Abstract

Imatinib mesylate (Gleevec) is a small-molecule inhibitor of the fusion protein Bcr-Abl, the causal agent in chronic myelogenous leukemia. Here we report ten individuals who developed severe congestive heart failure while on imatinib and we show that imatinib-treated mice develop left ventricular contractile dysfunction. Transmission electron micrographs from humans and mice treated with imatinib show mitochondrial abnormalities and accumulation of membrane whorls in both vacuoles and the sarco- (endo-) plasmic reticulum, findings suggestive of a toxic myopathy. With imatinib treatment, cardiomyocytes in culture show activation of the endoplasmic reticulum (ER) stress response, collapse of the mitochondrial membrane potential, release of cytochrome c into the cytosol, reduction in cellular ATP content and cell death. Retroviral gene transfer of an imatinib-resistant mutant of c-Abl, alleviation of ER stress or inhibition of Jun amino-terminal kinases, which are activated as a consequence of ER stress, largely rescues cardiomyocytes from imatinib-induced death. Thus, cardiotoxicity is an unanticipated side effect of inhibition of c-Abl by imatinib.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imatinib is cardiotoxic in humans.
Figure 2: Imatinib is cardiotoxic in mice.
Figure 3: Effect of imatinib treatment on mitochondrial function and on mediators and markers of apoptosis.
Figure 4: Effect of imatinib on characteristics of necrotic cell death.
Figure 5: Signaling pathways regulating imatinib-induced cell death.

Similar content being viewed by others

References

  1. Van Etten, R.A. Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Leuk. Res. 28 (Suppl. 1), S21–S28 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Deininger, M., Buchdunger, E. & Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, M.H. et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 8, 935–942 (2002).

    CAS  PubMed  Google Scholar 

  4. Sawyer, D.B., Zuppinger, C., Miller, T.A., Eppenberger, H.M. & Suter, T.M. Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1β and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105, 1551–1554 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Grazette, L.P. et al. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J. Am. Coll. Cardiol. 44, 2231–2238 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Romond, E.H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Piccart-Gebhart, M.J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, Z.M. et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase. Proc. Natl. Acad. Sci. USA 94, 1437–1440 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. & Miki, Y. JNK phosphorylation of 14–3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat. Cell Biol. 7, 278–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Van Etten, R.A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 9, 179–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, X. et al. Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J. Biol. Chem. 275, 17237–17240 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Li, B. et al. Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase Cδ. Genes Dev. 18, 1824–1837 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng, X. et al. Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation. Nat. Genet. 36, 906–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Cao, C., Leng, Y. & Kufe, D. Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J. Biol. Chem. 278, 29667–29675 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Cao, C., Leng, Y., Huang, W., Liu, X. & Kufe, D. Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J. Biol. Chem. 278, 39609–39614 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Vasan, R.S., Levy, D., Larson, M.G. & Benjamin, E.J. Interpretation of echocardiographic measurements: a call for standardization. Am. Heart J. 139, 412–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Khan, M.A. Effects of myotoxins on skeletal muscle fibers. Prog. Neurobiol. 46, 541–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Daniels, C.E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-β and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schermuly, R.T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolff, N.C. & Ilaria, R.L., Jr. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98, 2808–2816 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. le Coutre, P. et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J. Natl. Cancer Inst. 91, 163–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat. Genet. 36, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. McLeod, C.J., Pagel, I. & Sack, M.N. The mitochondrial biogenesis regulatory program in cardiac adaptation to ischemia–a putative target for therapeutic intervention. Trends Cardiovasc. Med. 15, 118–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Sanbe, A. et al. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc. Natl. Acad. Sci. USA 102, 13592–13597 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ankarcrona, M. et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Murriel, C.L., Churchill, E., Inagaki, K., Szweda, L.I. & Mochly-Rosen, D. Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. J. Biol. Chem. 279, 47985–47991 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Steinberg, S.F. Distinctive activation mechanisms and functions for protein kinase Cδ. Biochem. J. 384, 449–459 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, K. & Kaufman, R.J. Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem. 279, 25935–25938 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ron, D. Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383–1388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, A.H., Iwakoshi, N.N. & Glimcher, L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Baines, C.P. & Molkentin, J.D. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J. Mol. Cell. Cardiol. 38, 47–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Pattacini, L. et al. Endoplasmic reticulum stress initiates apoptotic death induced by STI571 inhibition of p210 bcr-abl tyrosine kinase. Leuk. Res. 28, 191–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Ito, Y. et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21, 6233–6242 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, R.V., Ellerby, H.M. & Bredesen, D.E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Aoki, H. et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiomyocytes. J. Biol. Chem. 277, 10244–10250 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Tsuruta, F. et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14–3-3 proteins. EMBO J. 23, 1889–1899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okada, M. et al. A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103, 2299–2307 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Schiller, N.B. et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 2, 358–367 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Haq, S. et al. Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nat. Med. 9, 944–951 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Molkentin, C. Baines and M. Venkatachalam for advice. This work was supported by a grant from the National Heart Lung and Blood Institute (HL67371 to T.F.) and a Specialized Center of Research grant from the Leukemia and Lymphoma Society (to R.A.V.) and grants from the Finnish Heart Foundation and the Paavo Nurmi Foundation (to R.K.).

Author information

Authors and Affiliations

Authors

Contributions

R.K. performed cell-culture studies, animal studies, generated figures, and helped design the study and write the manuscript. L.G. performed ATP and ADP assays, caspase 3/7 activity assays, Bax translocation and multimerization studies. R.Y. generated retroviruses. C.I. collected patient data. R.P. assisted with performance and analysis of echocardiographic studies. C.B., B.W. and S.S. assisted with cell-culture studies. S.P. assisted with histological studies. F.J.C. analyzed electron micrographs of patient biopsies. A.R. provided expertise for apoptosis studies. R.N.S. provided expertise for histological studies. R.A.V. generated retroviruses, provided expertise on c-Abl, and helped write and edit the manuscript. J.A. analyzed electron micrographs of mouse hearts. J.-B.D. enrolled participants, analyzed patient data and contributed to study design. T.F. (principal investigator) designed studies, interpretated and analyzed data, and drafted and edited the manuscript.

Note: Supplementary information is available on the Nature Medicine website.

Corresponding author

Correspondence to Thomas Force.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Imatinib leads to the upregulation and cleavage of PKCδ. (PDF 2764 kb)

Supplementary Fig. 2

Imatinib activates JNK pathway in vivo. (PDF 1302 kb)

Supplementary Fig. 3

Inhibition of JNKs does not reduce activation of the ER stress response. (PDF 892 kb)

Supplementary Table 1

Clinical characteristics of patients with imatinib-associated heart failure. (PDF 25 kb)

Supplementary Methods (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerkelä, R., Grazette, L., Yacobi, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12, 908–916 (2006). https://doi.org/10.1038/nm1446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing