Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch

Abstract

Bundles of taxol-stabilized microtubules (MTs)—hollow tubules comprised of assembled αβ-tubulin heterodimers—spontaneously assemble above a critical concentration of tetravalent spermine and are stable over long times at room temperature. Here we report that at concentrations of spermine several-fold higher the MT bundles (BMT) quickly become unstable and undergo a shape transformation to bundles of inverted tubulin tubules (BITT), the outside surface of which corresponds to the inner surface of the BMT tubules. Using transmission electron microscopy and synchrotron small-angle X-ray scattering, we quantitatively determined both the nature of the BMT-to-BITT transformation pathway, which results from a spermine-triggered conformation switch from straight to curved in the constituent taxol-stabilized tubulin oligomers, and the structure of the BITT phase, which is formed of tubules of helical tubulin oligomers. Inverted tubulin tubules provide a platform for studies requiring exposure and availability of the inside, luminal surface of MTs to MT-targeted drugs and MT-associated proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a spermine (4+ or Sp4+)-induced inversion process from bundles of taxol-stabilized MTs (BMT) to bundles of ITTs (BITT).
Figure 2: TEM images of taxol-stabilized MT bundles (BMT) and the new spermine-induced phase of bundles of ITTs (BITT).
Figure 3: Time-dependent TEM of the pathway of inversion of taxol-stabilized MT bundles (BMT) into bundles of ITTs (BITT) at 4 °C and 12.5 mM spermine.
Figure 4: Size distribution of ring-like PFs in the coexistence regime of disassembling MT bundles (BMT) and assembling bundles of ITTs (BITT) from TEM.
Figure 5: Synchrotron SAXS data of taxol-stabilized MT bundles (BMT) and bundles of ITTs (BITT).
Figure 6: Time-dependent synchrotron SAXS data of the transition kinetics from bundles of MTs (BMT) to bundles of ITTs (BITT).

Similar content being viewed by others

References

  1. Bray, D. Cell Movements: From Molecules to Motility 2nd edn (Garland, 2001).

    Google Scholar 

  2. Thomas, T. D., Earnshaw, W. C. & Lippincott-Schwartz, J. Cell Biology 2nd edn (Saunders, Elsevier, 2008).

    Google Scholar 

  3. Israelachvili, J. N. Intermolecular & Surface Forces (Academic, 1992).

    Google Scholar 

  4. Sackmann, E. Membrane bending energy concept of vesicle-shape and cell-shape and shape-transitions. FEBS Lett. 346, 3–16 (1994).

    Article  CAS  Google Scholar 

  5. Chiruvolu, S. et al. A phase of liposomes with entangled tubular vesicles. Science 266, 1222–1225 (1994).

    Article  CAS  Google Scholar 

  6. Zidovska, A. et al. Block liposomes from curvature-stabilizing lipids: Connected nanotubes, -rods and -spheres. Langmuir 25, 2979–2985 (2009).

    Article  CAS  Google Scholar 

  7. Zidovska, A. et al. Block liposome and nanotube formation is a general phenomenon of membranes containing multivalent lipids. Soft Matter 7, 8363–8369 (2011).

    Article  CAS  Google Scholar 

  8. Seeman, N. C. & Belcher, A. M. Emulating biology: Building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6451–6455 (2002).

    Article  CAS  Google Scholar 

  9. Ringler, P. & Schulz, G. E. Self-assembly of proteins into designed networks. Science 302, 106–109 (2003).

    Article  CAS  Google Scholar 

  10. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  11. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  Google Scholar 

  12. Nogales, E., Wang, H. W. & Niederstrasser, H. Tubulin rings: Which way do they curve. Curr. Opin. Struct. Biol. 13, 256–261 (2003).

    Article  CAS  Google Scholar 

  13. Lowe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  CAS  Google Scholar 

  14. Ravelli, R. B. G. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  CAS  Google Scholar 

  15. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: A time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  CAS  Google Scholar 

  16. Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, K. H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995).

    Article  CAS  Google Scholar 

  17. Mitra, A. & Sept, D. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys. J. 95, 3252–3258 (2008).

    Article  CAS  Google Scholar 

  18. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Rev. Cancer 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  19. Jordan, M. A. & Wilson, L. in Cancer Drug Discovery and Development, The Role of Microtubules in Cell Biology, Neurobiology, and Oncology (ed. Fojo, T.) 47–81 (Humana Press, 2008).

    Book  Google Scholar 

  20. Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

    Article  CAS  Google Scholar 

  21. Choi, M.C. et al. Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: A synchrotron X-ray scattering study. Biophys. J. 97, 519–527 (2009).

    Article  CAS  Google Scholar 

  22. Needleman, D. J. et al. Higher-order assembly of microtubules by counterions: From hexagonal bundles to living necklaces. Proc. Natl Acad. Sci. USA 101, 16099–16103 (2004).

    Article  CAS  Google Scholar 

  23. Gelbart, W. M., Bruinsma, R. F., Pincus, P. A. & Parsegian, V. A. DNA-inspired electrostatics. Phys. Today 53, 38–44 (2000).

    Article  CAS  Google Scholar 

  24. Koltover, I., Wagner, K. & Safinya, C. R. DNA condensation in two dimensions. Proc. Natl Acad. Sci. USA 97, 14046–14051 (2000).

    Article  CAS  Google Scholar 

  25. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    Article  CAS  Google Scholar 

  26. Savarin, P. et al. Central role for polyamines in microtubule assembly in cells. Biochem. J. 430, 151–159 (2010).

    Article  CAS  Google Scholar 

  27. Jacobs, M., Bennett, P. M. & Dickens, M. J. Duplex microtubule is a new form of tubulin assembly induced by polycations. Nature 257, 707–709 (1975).

    Article  CAS  Google Scholar 

  28. Erickson, H. P. & Voter, W. A. Polycation-induced assembly of purified tubulin. Proc. Natl Acad. Sci. USA 73, 2813–2817 (1976).

    Article  CAS  Google Scholar 

  29. Kuznetsov, S. A., Gelfand, V. I., Rodionov, V. A., Rosenblat, V. A. & Gulyaeva, J. G. Polymerization of purified tubulin by synthetic polycations. FEBS Lett. 95, 343–346 (1978).

    Article  CAS  Google Scholar 

  30. Erickson, H. P. in Cell Motility (eds Goldman, R., Pollard, T. & Rosenbaum, J.) (Cold Spring Harbor, 1976).

    Google Scholar 

  31. Howard, W. D. & Timasheff, S. N. GDP state of tubulin: Stabilization of double rings. Biochemistry 25, 8292–8300 (1986).

    Article  CAS  Google Scholar 

  32. Nicholson, W. V., Lee, M., Downing, K. H. & Nogales, E. Cryo-electron microscopy of GDP-tubulin rings. Cell Biochem. Biophys. 31, 175–183 (1999).

    Article  CAS  Google Scholar 

  33. Wang, H-W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005).

    Article  CAS  Google Scholar 

  34. Raviv, U. et al. Cationic liposome-microtubule complexes: Pathways to the formation of two-state lipid-protein nanotubes with open or closed ends. Proc. Natl Acad. Sci. USA 102, 11167–11172 (2005).

    Article  CAS  Google Scholar 

  35. Raviv, U. et al. Microtubule protofilament number is modulated in a stepwise fashion by the charge density of an enveloping layer. Biophys. J. 92, 278–287 (2007).

    Article  CAS  Google Scholar 

  36. Cochran, W., Crick, F. H. C. & Vand, V. The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Crystal. 5, 581–586 (1952).

    Article  CAS  Google Scholar 

  37. Warren, B. E. X-ray diffraction in random layer lattice. Phys. Rev. 59, 693–698 (1941).

    Article  CAS  Google Scholar 

  38. Glatter, O. & Kratky, O. (eds) in Small Angle X-ray Scattering 155–156 (Academic, 1982).

  39. Levelut, A. Structure of a disk-like mesophase. J. Physique 40, 8184–8188 (1979).

    Google Scholar 

  40. Safinya, C. R., Liang, K. S., Varady, W. A., Clark, N. A. & Andersson, G. Synchrotron X-ray study of the orientational ordering D2-D1 structural phase transition of freely suspended discotic strands in triphenylene-hexa-dodecanoate. Phys. Rev. Lett. 53, 1172–1175 (1984).

    Article  CAS  Google Scholar 

  41. Guinier, A. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, 1963).

    Google Scholar 

  42. Goedert, M. & Spillantini, M. G. A century of Alzheimer’s disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  43. Roberson, E. D. & Mucke, L. 100 Years and counting: Prospects for defeating Alzheimer’s disease. Science 314, 781–784 (2006).

    Article  Google Scholar 

  44. Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    Article  CAS  Google Scholar 

  45. Kar, S., Fan, J., Smith, M. J., Goedert, M. & Amos, L. A. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 22, 70–77 (2003).

    Article  CAS  Google Scholar 

  46. Makrides, V., Massie, M. R., Feinstein, S. C. & Lew, J. Evidence for two distinct binding sites for tau on microtubules. Proc. Natl Acad. Sci. USA 101, 6746–6751 (2004).

    Article  CAS  Google Scholar 

  47. Miller, H. P. & Wilson, L. Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol. 95, 2–15 (2010).

    Article  Google Scholar 

  48. Szekely, P., Ginsburg, A., Ben Nun, T. & Raviv, U. Solution X-ray scattering form factors of supramolecular self-assembled structures. Langmuir 26, 13110–13129 (2010).

    Article  CAS  Google Scholar 

  49. Ben Nun, T., Ginsburg, A., Szekely, P. & Raviv, U. X+: A comprehensive, computationally accelerated, structural analysis tool of solution X-ray scattering from supramolecular self-assemblies. J. Appl. Crystallogr. 43, 1522–1531 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.R.S., Y.L. and P.A.K. were supported by DOE-BES DE-FG02-06ER46314 (dynamic evolution of assemblies) and NSF DMR-1101900 (protein phase behaviour). L.W. and H.P.M. were supported by NIH R01-NS13560. D.J.N. and U.R. were supported by the US–Israel Binational Foundation (Grant 2009271), and U.R. acknowledges support from the Israel Science Foundation (Grant 1372/13). M.A.O-L. was supported by Mexico-based science foundations CONACyT, PIFI, PROMEP and UCMEXUS. C.S. was supported by National Research Foundation of Korea Grant NRF 2011-355-C00037. M.C.C. was supported by National Research Foundation of Korea Grants NRF 2011-0031931, 2011-0030923, 2012R1A1A1011023 and KAIST HRHRP N10110077. C.R.S. acknowledges discussions with KAIST faculty as part of his WCU (World Class University) Visiting Professor of Physics appointment supported by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology No. R33-2008-000-10163-0. We acknowledge use of UC-Santa Barbara’s TEM bioimaging and NSF-DMR-MRSEC facilities (NSF-DMR-1121053, a member of the NSF-funded Materials Research Facilities Network www.mrfn.org), and the Stanford Synchrotron Radiation Laboratory (SSRL), a DOE National Laboratory (where the SAXS work was performed).

Author information

Authors and Affiliations

Authors

Contributions

M.A.O-L., C.S. and M.C.C. performed electron microscopy, and M.A.O-L. and D.J.N. took X-ray data. H.P.M. purified tubulin. C.R.S., D.J.N., Y.L., U.R. and M.A.O-L. developed X-ray structure and form factors, and D.J.N. and A.G. carried out X-ray line-shape analysis. Y.L. and P.A.K. performed the statistical analysis of ring diameters, and Y.L. wrote the Supplementary Information. C.R.S., D.J.N. and M.A.O-L. wrote the paper. M.C.C., C.S., Y.L., U.R., H.P.M. and L.W. engaged in discussions and critical comments on the manuscript.

Corresponding author

Correspondence to Cyrus R. Safinya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojeda-Lopez, M., Needleman, D., Song, C. et al. Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch. Nature Mater 13, 195–203 (2014). https://doi.org/10.1038/nmat3858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing