Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPV1 shows dynamic ionic selectivity during agonist stimulation

Abstract

Transient receptor potential vanilloid 1 (TRPV1) is an ion channel that is gated by noxious heat, capsaicin and other diverse stimuli. It is a nonselective cation channel that prefers Ca2+ over Na+. These permeability characteristics, as in most channels, are widely presumed to be static. On the contrary, we found that activation of native or recombinant rat TRPV1 leads to time- and agonist concentration–dependent increases in relative permeability to large cations and changes in Ca2+ permeability. Using the substituted cysteine accessibility method, we saw that these changes were attributable to alterations in the TRPV1 selectivity filter. TRPV1 agonists showed different capabilities for evoking ionic selectivity changes. Furthermore, protein kinase C–dependent phosphorylation of Ser800 in the TRPV1 C terminus potentiated agonist-evoked ionic selectivity changes. Thus, the qualitative signaling properties of TRPV1 are dynamically modulated during channel activation, a process that probably shapes TRPV1 participation in pain, cytotoxicity and neurotransmitter release.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capsaicin evokes a time-dependent increase in TRPV1 NMDG permeability.
Figure 2: Capsaicin alters TRPV1 permeability to large cations.
Figure 3: Modification by methanethiosulfonate reagents reverses capsaicin-evoked ionic selectivity change in TRPV1 M644C.
Figure 4: Differential ionic selectivity changes evoked by TRPV1 agonists.
Figure 5: Capsaicin- and [Ca2+]o-dependent changes in TRPV1 PCa/PNa.
Figure 6: Agonist-evoked changes in TRPV1 PCa/PNa in the presence of 10 mM Ca2+ and 150 mM Na+.
Figure 7: Protein kinase C sensitizes capsaicin-evoked TRPV1 ionic selectivity changes.

Similar content being viewed by others

References

  1. Khakh, B.S. & Lester, H.A. Dynamic selectivity filters in ion channels. Neuron 23, 653–658 (1999).

    Article  CAS  Google Scholar 

  2. Kiss, L., LoTurco, J. & Korn, S.J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

    Article  CAS  Google Scholar 

  3. Khakh, B.S., Bao, X.R., Labarca, C. & Lester, H.A. Neuronal P2X transmitter–gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322–330 (1999).

    Article  CAS  Google Scholar 

  4. Surprenant, A., Rassendren, F., Kawashima, E., North, R.A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    Article  CAS  Google Scholar 

  5. Virginio, C., MacKenzie, A., North, R.A. & Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. (Lond.) 519, 335–346 (1999).

    Article  CAS  Google Scholar 

  6. Virginio, C., MacKenzie, A., Rassendren, F.A., North, R.A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 2, 315–321 (1999).

    Article  CAS  Google Scholar 

  7. Caterina, M.J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  CAS  Google Scholar 

  8. Ahern, G.P., Wang, X. & Miyares, R.L. Polyamines are potent ligands for the capsaicin receptor TRPV1. J. Biol. Chem. 281, 8991–8995 (2006).

    Article  CAS  Google Scholar 

  9. Binshtok, A.M., Bean, B.P. & Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007).

    Article  CAS  Google Scholar 

  10. Hellwig, N. et al. TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J. Biol. Chem. 279, 34553–34561 (2004).

    Article  CAS  Google Scholar 

  11. Meyers, J.R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).

    Article  CAS  Google Scholar 

  12. Myrdal, S.E. & Steyger, P.S. TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear. Res. 204, 170–182 (2005).

    Article  CAS  Google Scholar 

  13. Chung, M.K., Guler, A.D. & Caterina, M.J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).

    Article  CAS  Google Scholar 

  14. Zhuang, Z.Y., Xu, H., Clapham, D.E. & Ji, R.R. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J. Neurosci. 24, 8300–8309 (2004).

    Article  CAS  Google Scholar 

  15. Dwyer, T.M., Adams, D.J. & Hille, B. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).

    Article  CAS  Google Scholar 

  16. Eickhorst, A.N., Berson, A., Cockayne, D., Lester, H.A. & Khakh, B.S. Control of P2X2 channel permeability by the cytosolic domain. J. Gen. Physiol. 120, 119–131 (2002).

    Article  CAS  Google Scholar 

  17. Akabas, M.H., Stauffer, D.A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).

    Article  CAS  Google Scholar 

  18. Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 68, 685–717 (2006).

    Article  CAS  Google Scholar 

  19. Huang, S.M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400–8405 (2002).

    Article  CAS  Google Scholar 

  20. McNamara, F.N., Randall, A. & Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 144, 781–790 (2005).

    Article  CAS  Google Scholar 

  21. Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    Article  CAS  Google Scholar 

  22. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

    Article  CAS  Google Scholar 

  23. Welch, J.M., Simon, S.A. & Reinhart, P.H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl. Acad. Sci. USA 97, 13889–13894 (2000).

    Article  CAS  Google Scholar 

  24. Garcia-Martinez, C., Morenilla-Palao, C., Planells-Cases, R., Merino, J.M. & Ferrer-Montiel, A. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275, 32552–32558 (2000).

    Article  CAS  Google Scholar 

  25. Bhave, G. et al. Protein kinase C phosphorylation sensitizes, but does not activate, the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100, 12480–12485 (2003).

    Article  CAS  Google Scholar 

  26. Numazaki, M., Tominaga, T., Toyooka, H. & Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J. Biol. Chem. 277, 13375–13378 (2002).

    Article  CAS  Google Scholar 

  27. Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J.B. & McNaughton, P.A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. (Lond.) 534, 813–825 (2001).

    Article  CAS  Google Scholar 

  28. Liu, L., Lo, Y., Chen, I. & Simon, S.A. The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J. Neurosci. 17, 4101–4111 (1997).

    Article  CAS  Google Scholar 

  29. Ahern, G.P., Brooks, I.M., Miyares, R.L. & Wang, X.B. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116 (2005).

    Article  CAS  Google Scholar 

  30. Yeh, B.I., Kim, Y.K., Jabbar, W. & Huang, C.L. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J. 24, 3224–3234 (2005).

    Article  CAS  Google Scholar 

  31. Flynn, G.E., Johnson, J.P., Jr. & Zagotta, W.N. Cyclic nucleotide–gated channels: shedding light on the opening of a channel pore. Nat. Rev. Neurosci. 2, 643–651 (2001).

    Article  CAS  Google Scholar 

  32. Alam, A., Shi, N. & Jiang, Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. USA 104, 15334–15339 (2007).

    Article  CAS  Google Scholar 

  33. Docherty, R.J., Yeats, J.C., Bevan, S. & Boddeke, H.W. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch. 431, 828–837 (1996).

    Article  CAS  Google Scholar 

  34. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  35. Khakh, B.S. & Egan, T.M. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics. J. Biol. Chem. 280, 6118–6129 (2005).

    Article  CAS  Google Scholar 

  36. Khakh, B.S., Zhou, X., Sydes, J., Galligan, J.J. & Lester, H.A. State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406, 405–410 (2000).

    Article  CAS  Google Scholar 

  37. Bleakman, D., Brorson, J.R. & Miller, R.J. The effect of capsaicin on voltage-gated calcium currents and calcium signals in cultured dorsal root ganglion cells. Br. J. Pharmacol. 101, 423–431 (1990).

    Article  CAS  Google Scholar 

  38. Evans, A.R., Nicol, G.D. & Vasko, M.R. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265–273 (1996).

    Article  CAS  Google Scholar 

  39. Marinelli, S., Vaughan, C.W., Christie, M.J. & Connor, M. Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J. Physiol. (Lond.) 543, 531–540 (2002).

    Article  CAS  Google Scholar 

  40. Jancso, G. Pathobiological reactions of C fibre primary sensory neurones to peripheral nerve injury. Exp. Physiol. 77, 405–431 (1992).

    Article  CAS  Google Scholar 

  41. Chancellor, M.B. & de Groat, W.C. Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J. Urol. 162, 3–11 (1999).

    Article  CAS  Google Scholar 

  42. Skeberdis, V.A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).

    Article  CAS  Google Scholar 

  43. Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53, 17–24 (2007).

    Article  CAS  Google Scholar 

  44. Liu, L. & Simon, S.A. Similarities and differences in the currents activated by capsaicin, piperine and zingerone in rat trigeminal ganglion cells. J. Neurophysiol. 76, 1858–1869 (1996).

    Article  CAS  Google Scholar 

  45. Szallasi, A. The vanilloid (capsaicin) receptor: receptor types and species differences. Gen. Pharmacol. 25, 223–243 (1994).

    Article  CAS  Google Scholar 

  46. Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    Article  CAS  Google Scholar 

  47. Lewis, C.A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (Lond.) 286, 417–445 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Zhu and D. Julius for providing mouse TRPV1 and 5-HT3 cDNAs, respectively, J. Wang for expert technical assistance and G. Tomaselli and members of the Caterina lab for helpful suggestions. This work was supported by grants from the US National Institutes of Health (RO1 NS051551 and RO1 NS054902), the W.M. Keck Foundation, the Arnold and Mabel Beckman Foundation and the Blaustein Pain Research Fund to M.J.C.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and interpreted the experiments. M.-K.C. and A.D.G. carried out the experiments, M.J.C. and M.-K.C. wrote the manuscript and M.J.C. supervised the project.

Corresponding author

Correspondence to Michael J Caterina.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Tables 1–3 and Methods (PDF 2438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, MK., Güler, A. & Caterina, M. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11, 555–564 (2008). https://doi.org/10.1038/nn.2102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing