Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling

Abstract

Stress and anxiety disorders are risk factors for depression and these behaviors are modulated by corticotrophin-releasing factor receptor 1 (CRFR1) and serotonin receptor (5-HT2R). However, the potential behavioral and cellular interaction between these two receptors is unclear. We found that pre-administration of corticotrophin-releasing factor (CRF) into the prefrontal cortex of mice enhanced 5-HT2R–mediated anxiety behaviors in response to 2,5-dimethoxy-4-iodoamphetamine. In both heterologous cell cultures and mouse cortical neurons, activation of CRFR1 also enhanced 5-HT2 receptor–mediated inositol phosphate formation. CRFR1-mediated increases in 5-HT2R signaling were dependent on receptor internalization and receptor recycling via rapid recycling endosomes, resulting in increased expression of 5-HT2R on the cell surface. Sensitization of 5-HT2R signaling by CRFR1 required intact PDZ domain–binding motifs at the end of the C-terminal tails of both receptor types. These data suggest a mechanism by which CRF, a peptide known to be released by stress, enhances anxiety-related behavior via sensitization of 5-HT2R signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of CRFR1 activation on 5-HT2R signaling.
Figure 2: Effect of CRFR1 activation on 5-HT2R signaling in neurons.
Figure 3: Role of endocytosis in CRFR1-dependent augmentation of 5-HT2R signaling.
Figure 4: Role of receptor recycling in CRF-modulated 5-HT2R signaling.
Figure 5: Receptor determinants of CRF-dependent increases in 5-HT2R signaling.
Figure 6: Analysis of CRF pretreatment on 5-HT2R–mediated anxiety-related behaviors.
Figure 7: Analysis of CRF pretreatment on 5-HT2R–mediated anxiety-related behaviors following M100907 treatment.

Similar content being viewed by others

References

  1. Anisman, H., Merali, Z. & Stead, J.D.H. Experimental and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci. Biobehav. Rev. 32, 1185–1206 (2008).

    Article  CAS  Google Scholar 

  2. Millan, M.J. Serotonin 5–HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60, 441–460 (2005).

    Article  Google Scholar 

  3. Holsboer, F. Corticotropin-releasing hormone modulators and depression. Curr. Opin. Investig. Drugs 4, 46–50 (2003).

    CAS  PubMed  Google Scholar 

  4. Nestler, E.J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  Google Scholar 

  5. Leonard, B.E. The HPA and immune axes in stress: the involvement of the serotonergic system. Eur. Psychiatry 20, S302–S306 (2005).

    Article  Google Scholar 

  6. Holmes, A., Heilig, M., Rupniak, N.M., Steckler, T. & Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 24, 580–588 (2003).

    Article  CAS  Google Scholar 

  7. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    Article  CAS  Google Scholar 

  8. Merali, Z., Khan, S., Michaud, D.S., Shippy, S.A. & Anisman, H. Does amygdaloid corticotropin-releasing hormone (CRF) mediate anxiety-like behaviors? Dissociation of anxiogenic effects and CRF release. Eur. J. Neurosci. 20, 229–239 (2004).

    Article  CAS  Google Scholar 

  9. Müller, M.B. et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat. Neurosci. 6, 1100–1107 (2003).

    Article  Google Scholar 

  10. Millan, M.J., Marin, P., Bockaert, J. & la Cour, C.M. Signaling at G protein–coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol. Sci. 29, 454–464 (2008).

    Article  CAS  Google Scholar 

  11. Bockaert, J., Claeysen, S., Bécamel, C., Dumuis, A. & Marin, P. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling and roles in synaptic modulation. Cell Tissue Res. 326, 553–572 (2006).

    Article  CAS  Google Scholar 

  12. Heisler, L.K., Zhou, L., Bajwa, P., Hsu, J. & Tecott, L.H. Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav. 6, 491–496 (2007).

    Article  CAS  Google Scholar 

  13. Weisstaub, N.V. et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313, 536–540 (2006).

    Article  CAS  Google Scholar 

  14. Valdez, G.R. Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date. CNS Drugs 20, 887–896 (2006).

    Article  CAS  Google Scholar 

  15. Celada, P., Puig, M., Amargós-Bosch, M., Adell, A. & Artigas, F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci. 29, 252–265 (2004).

    PubMed  PubMed Central  Google Scholar 

  16. Pillay, N.S. & Stein, D.J. Emerging anxiolytics. Expert Opin. Emerg. Drugs 12, 541–554 (2007).

    Article  CAS  Google Scholar 

  17. Merali, Z. et al. Bombesin receptors as novel anti-anxiety therapeutic target; non-peptide antagonist PD 176252 reduces anxiety and 5-HT release through BB1 receptor. J. Neurosci. 26, 10387–10396 (2006).

    Article  CAS  Google Scholar 

  18. Trimble, N., Johnson, A.C., Foster, A. & Greenwood-van Meerveld, B. Corticotropin-releasing factor receptor 1-deficient mice show decreased anxiety and colonic sensitivity. Neurogastroenterol. Motil. 19, 754–760 (2007).

    Article  CAS  Google Scholar 

  19. Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  20. Owens, M.J. & Nemeroff, C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43, 425–473 (1991).

    CAS  PubMed  Google Scholar 

  21. Chen, R., Lewis, K.A., Perrin, M.H. & Vale, W.W. Expression cloning of a human corticotropin releasing–factor receptor. Proc. Natl. Acad. Sci. USA 90, 8967–8971 (1993).

    Article  CAS  Google Scholar 

  22. Lovenberg, T.W. et al. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc. Natl. Acad. Sci. USA 92, 836–840 (1995).

    Article  CAS  Google Scholar 

  23. Cummings, S., Elde, R., Ells, J. & Lindall, A. Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat. J. Neurosci. 3, 1355–1368 (1983).

    Article  CAS  Google Scholar 

  24. Chalmers, D.T., Lovenberg, T.W. & De Souza, E.B. Localization of novel corticotropin- releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340–6350 (1995).

    Article  CAS  Google Scholar 

  25. De Souza, E.B. et al. Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. J. Neurosci. 5, 3189–3203 (1985).

    Article  CAS  Google Scholar 

  26. Hoyer, D. et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203 (1994).

    CAS  PubMed  Google Scholar 

  27. Tan, H., Zhong, P. & Yan, Z. Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. J. Neurosci. 24, 5000–5008 (2004).

    Article  CAS  Google Scholar 

  28. Bhatnagar, A. et al. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J. Biol. Chem. 276, 8269–8277 (2001).

    Article  CAS  Google Scholar 

  29. Holmes, K.D., Babwah, A.V., Dale, L.B., Poulter, M.O. & Ferguson, S.S.G. Differential regulation of corticotropin releasing factor receptor 1α endocytosis and trafficking by β-arrestins and Rab GTPases. J. Neurochem. 96, 934–949 (2006).

    Article  CAS  Google Scholar 

  30. Xia, Z., Gray, J.A., Compton-Toth, B.A. & Roth, B.L. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J. Biol. Chem. 278, 21901–21908 (2003).

    Article  CAS  Google Scholar 

  31. Bécamel, C. et al. Synaptic multinositol phosphaterotein complexes associated with 5-HT2C receptors: a proteomic approach. EMBO J. 21, 2332–2342 (2002).

    Article  Google Scholar 

  32. Bécamel, C. et al. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J. Biol. Chem. 279, 20257–20266 (2004).

    Article  Google Scholar 

  33. Gavarini, S. et al. Opposite effects of PSD-95 and MPP3 PDZ proteins on serotonin 5-hydroxytryptamine2C receptor desensitization and membrane stability. Mol. Biol. Cell 17, 4619–4631 (2006).

    Article  CAS  Google Scholar 

  34. Abbas, A.I. et al. PSD-95 is essential for hallucinogen and atypical antinositol phosphatesychotic drug actions at serotonin receptors. J. Neurosci. 29, 7124–7136 (2009).

    Article  CAS  Google Scholar 

  35. Anisman, H., Merali, Z. & Hayley, S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity of depression with neurodegenerative disorders. Prog. Neurobiol. 85, 1–74 (2008).

    Article  CAS  Google Scholar 

  36. Xia, Z., Hufeisen, S.J., Gray, J.A. & Roth, B.L. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 122, 907–920 (2003).

    Article  CAS  Google Scholar 

  37. Doherty, M.D. & Pickel, V.M. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res. 864, 176–185 (2000).

    Article  CAS  Google Scholar 

  38. Gray, J.A. et al. Cell type–specific effects of endocytosis inhibitors on 5-hydroxytryptamine (2A) receptor desensitization and resensitization reveal an arrestin-, GRK2- and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol. Pharmacol. 60, 1020–1030 (2001).

    Article  CAS  Google Scholar 

  39. Schlag, B.D., Lou, Z., Fennell, M. & Dunlop, J. Ligand dependency of 5-hydroxytryptamine2C receptor internalization. J. Pharmacol. Exp. Ther. 310, 865–870 (2004).

    Article  CAS  Google Scholar 

  40. Marion, S., Weiner, D.M. & Caron, M.G. RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J. Biol. Chem. 279, 2945–2954 (2004).

    Article  CAS  Google Scholar 

  41. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  Google Scholar 

  42. Hu, L.A. et al. β1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J. Biol. Chem. 275, 38659–38666 (2000).

    Article  CAS  Google Scholar 

  43. Ferguson, S.S.G. Evolving concepts in G protein–coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24 (2001).

    CAS  PubMed  Google Scholar 

  44. Seachrist, J.L., Anborgh, P.H. & Ferguson, S.S.G. β2-adrenergic receptor internalization, endosomal sorting and plasma membrane recycling are regulated by Rab GTPases. J. Biol. Chem. 275, 27221–27228 (2000).

    CAS  PubMed  Google Scholar 

  45. Ferguson, S.S.G. & Caron, M.G. Green fluorescent protein tagged β-arrestin translocation as a measure of G protein–coupled receptor activation. Methods Mol. Biol. 237, 121–126 (2004).

    CAS  PubMed  Google Scholar 

  46. Dhami, G.K. et al. Protein-coupled receptor kinase 2 RGS homology domain binds to both metabotropic glutamate receptor 1a and Gαq to attenuate signaling. J. Biol. Chem. 279, 16614–16620 (2004).

    Article  CAS  Google Scholar 

  47. Conn, P.J. & Sanders-Bush, E. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex, but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195–203 (1985).

    CAS  PubMed  Google Scholar 

  48. Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1997).

Download references

Acknowledgements

A.C.M. and D.L. received Canadian Institutes for Health Research (CIHR) fellowships. K.D.H. received a fellowship from the Ontario Mental Health Foundation. L.C.-A. was supported by a Conventions Industrielles de Formation par la Recherche fellowship from CisBio and the French government. J.-P.P. was supported by CNRS, INSERM, the Agence Nationale de la Recherche grant Blan06-3_135092 and CisBio. S.S.G.F. and H.A. hold Tier I Canada Research Chairs, and S.S.G.F. is a Heart and Stroke Foundation of Ontario Career Investigator. This research was funded by CIHR grant MOP 62738 to S.S.G.F., CIHR grant MOP 81118 to H.A., US National Institutes of Health grants R01MH61887 and U19MH82441 and the Michael Hooker Distinguished Chair of Pharmacology to B.L.R.

Author information

Authors and Affiliations

Authors

Contributions

M.O.P., K.D.H., A.C.M., H.A. and S.S.G.F. conceived the experiments. H.A. carried out the behavioral experiments. A.C.M., K.D.H., L.B.D., L.C.-A., J.-P.P., L.D., P.N.Y. and D.L. performed the rest of the experiments. S.S.G.F., A.C.M., B.L.R. and H.A. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Stephen S G Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Table 1 (PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalhaes, A., Holmes, K., Dale, L. et al. CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci 13, 622–629 (2010). https://doi.org/10.1038/nn.2529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing