Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis

Abstract

A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opiates. We found that hyperalgesia-inducing treatment with morphine resulted in downregulation of the K+-Cl co-transporter KCC2, impairing Cl homeostasis in rat spinal lamina l neurons. Restoring the anion equilibrium potential reversed the morphine-induced hyperalgesia without affecting tolerance. The hyperalgesia was also reversed by ablating spinal microglia. Morphine hyperalgesia, but not tolerance, required μ opioid receptor–dependent expression of P2X4 receptors (P2X4Rs) in microglia and μ-independent gating of the release of brain-derived neurotrophic factor (BDNF) by P2X4Rs. Blocking BDNF-TrkB signaling preserved Cl homeostasis and reversed the hyperalgesia. Gene-targeted mice in which Bdnf was deleted from microglia did not develop hyperalgesia to morphine. However, neither morphine antinociception nor tolerance was affected in these mice. Our findings dissociate morphine-induced hyperalgesia from tolerance and suggest the microglia-to-neuron P2X4-BDNF-KCC2 pathway as a therapeutic target for preventing hyperalgesia without affecting morphine analgesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repeated morphine administration causes hyperalgesia and tolerance.
Figure 2: Morphine disrupts Cl homeostasis in lamina I neurons.
Figure 3: Morphine effects on activity and expression of KCC2.
Figure 4: Morphine-induced hyperalgesia depends on microglia activation.
Figure 5: P2X4Rs in microglia are required for morphine-induced hyperalgesia.
Figure 6: Altered Cl homeostasis in spinal neurons and morphine-induced hyperalgesia are dependent on P2X4R-BDNF-TrkB signaling.
Figure 7: Genetic deletion of Bdnf from microglia abrogates development of morphine-induced hyperalgesia, but not tolerance.
Figure 8: Activation of two separate signaling pathways is necessary for morphine-induced hyperalgesia.

Similar content being viewed by others

References

  1. Bekhit, M.H. Opioid-induced hyperalgesia and tolerance. Am. J. Ther. 17, 498–510 (2010).

    PubMed  Google Scholar 

  2. Lee, M., Silverman, S.M., Hansen, H., Patel, V.B. & Manchikanti, L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician 14, 145–161 (2011).

    PubMed  Google Scholar 

  3. Mao, J., Sung, B., Ji, R.R. & Lim, G. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J. Neurosci. 22, 8312–8323 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vanderah, T.W. et al. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J. Neurosci. 21, 279–286 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinke, B., Gingl, E. & Sandkuhler, J. Multiple targets of mu-opioid receptor–mediated presynaptic inhibition at primary afferent Adelta- and C-fibers. J. Neurosci. 31, 1313–1322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeng, J., Thomson, L.M., Aicher, S.A. & Terman, G.W. Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats. J. Neurosci. 26, 12033–12042 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  Google Scholar 

  8. Craig, A.D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30 (2003).

    CAS  PubMed  Google Scholar 

  9. Drdla, R., Gassner, M., Gingl, E. & Sandkuhler, J. Induction of synaptic long-term potentiation after opioid withdrawal. Science 325, 207–210 (2009).

    CAS  PubMed  Google Scholar 

  10. Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

    PubMed  Google Scholar 

  11. Zeilhofer, H.U., Benke, D. & Yevenes, G.E. Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu. Rev. Pharmacol. Toxicol. 52, 111–133 (2012).

    CAS  PubMed  Google Scholar 

  12. Coull, J.A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003).

    CAS  PubMed  Google Scholar 

  13. Keller, A.F., Beggs, S., Salter, M.W. & De Koninck, Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol. Pain 3, 27 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Cordero-Erausquin, M., Coull, J.A., Boudreau, D., Rolland, M. & De Koninck, Y. Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J. Neurosci. 25, 9613–9623 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sjøgren, P., Jonsson, T., Jensen, N.H., Drenck, N.E. & Jensen, T.S. Hyperalgesia and myoclonus in terminal cancer patients treated with continuous intravenous morphine. Pain 55, 93–97 (1993).

    PubMed  Google Scholar 

  16. Hewitt, S.A., Wamsteeker, J.I., Kurz, E.U. & Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009).

    CAS  PubMed  Google Scholar 

  17. Kemp, T., Spike, R.C., Watt, C. & Todd, A.J. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience 75, 1231–1238 (1996).

    CAS  PubMed  Google Scholar 

  18. Smirnov, S., Paalasmaa, P., Uusisaari, M., Voipio, J. & Kaila, K. Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J. Neurosci. 19, 9252–9260 (1999).

    CAS  PubMed  Google Scholar 

  19. Doyon, N. et al. Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS Comput. Biol. 7, e1002149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Staley, K.J., Soldo, B.L. & Proctor, W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    CAS  PubMed  Google Scholar 

  21. Prescott, S.A., Sejnowski, T.J. & De Koninck, Y. Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol. Pain 2, 32 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Coull, J.A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    CAS  Google Scholar 

  23. Blaesse, P. et al. Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. J. Neurosci. 26, 10407–10419 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chorin, E. et al. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J. Neurosci. 31, 12916–12926 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Beggs, S. & Salter, M.W. Microglia-neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr. Opin. Neurobiol. 20, 474–480 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, P., Waxman, S.G. & Hains, B.C. Extracellular signal–regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J. Neurosci. 27, 2357–2368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003).

    CAS  Google Scholar 

  28. Tsuda, M., Tozaki-Saitoh, H. & Inoue, K. Pain and purinergic signaling. Brain Res. Rev. 63, 222–232 (2010).

    CAS  PubMed  Google Scholar 

  29. Trang, T., Beggs, S., Wan, X. & Salter, M.W. P2X4 receptor–mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38 mitogen–activated protein kinase activation. J. Neurosci. 29, 3518–3528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ulmann, L. et al. Upregulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci. 28, 11263–11268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Koninck, Y. Altered chloride homeostasis in neurological disorders: a new target. Curr. Opin. Pharmacol. 7, 93–99 (2007).

    CAS  PubMed  Google Scholar 

  32. Mannion, R.J. et al. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc. Natl. Acad. Sci. USA 96, 9385–9390 (1999).

    CAS  PubMed  Google Scholar 

  33. Boillée, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    PubMed  Google Scholar 

  34. Rios, M. et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757 (2001).

    CAS  PubMed  Google Scholar 

  35. Matthes, H.W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819–823 (1996).

    CAS  PubMed  Google Scholar 

  36. Horvath, R.J., Romero-Sandoval, E.A. & De Leo, J.A. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150, 401–413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hutchinson, M.R. et al. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 63, 772–810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, J., Xu, M., Rossi, G.C., Pasternak, G.W. & Pan, Y.X. Identification and characterization of seven new exon 11–associated splice variants of the rat mu opioid receptor gene, OPRM1. Mol. Pain 7, 9 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X. et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Natl. Acad. Sci. USA 109, 6325–6330 (2012).

    CAS  PubMed  Google Scholar 

  40. Bohn, L.M., Gainetdinov, R.R., Lin, F.T., Lefkowitz, R.J. & Caron, M.G. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance, but not dependence. Nature 408, 720–723 (2000).

    CAS  PubMed  Google Scholar 

  41. Mao, J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain 100, 213–217 (2002).

    CAS  PubMed  Google Scholar 

  42. Wang, Y. et al. Blockade of PDGFR-beta activation eliminates morphine analgesic tolerance. Nat. Med. 18, 385–387 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Knabl, J. et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334 (2008).

    CAS  PubMed  Google Scholar 

  44. Asiedu, M., Ossipov, M.H., Kaila, K. & Price, T.J. Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain 148, 302–308 (2010).

    CAS  PubMed  Google Scholar 

  45. Horvath, R.J. & DeLeo, J.A. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J. Neurosci. 29, 998–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Takayama, N. & Ueda, H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J. Neurosci. 25, 430–435 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Merighi, A. et al. BDNF as a pain modulator. Prog. Neurobiol. 85, 297–317 (2008).

    CAS  PubMed  Google Scholar 

  48. Zhao, J. et al. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory, but not neuropathic pain. Mol. Cell. Neurosci. 31, 539–548 (2006).

    CAS  PubMed  Google Scholar 

  49. Boulenguez, P. et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 16, 302–307 (2010).

    CAS  PubMed  Google Scholar 

  50. Vargas-Perez, H. et al. Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324, 1732–1734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sim, J.A. et al. Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J. Neurosci. 26, 9006–9009 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  Google Scholar 

  53. Wang, Y. et al. Age-dependent morphine tolerance development in the rat. Anesth. Analg. 100, 1733–1739 (2005).

    CAS  PubMed  Google Scholar 

  54. Trang, T., Ma, W., Chabot, J.G., Quirion, R. & Jhamandas, K. Spinal modulation of calcitonin gene–related peptide by endocannabinoids in the development of opioid physical dependence. Pain 126, 256–271 (2006).

    CAS  PubMed  Google Scholar 

  55. Yaksh, T.L., Jessell, T.M., Gamse, R., Mudge, A.W. & Leeman, S.E. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286, 155–157 (1980).

    CAS  PubMed  Google Scholar 

  56. Salter, M.W. & Hicks, J.L. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J. Neurosci. 15, 2961–2971 (1995).

    CAS  PubMed  Google Scholar 

  57. De la Calle, J.L. & Paino, C.L. A procedure for direct lumbar puncture in rats. Brain Res. Bull. 59, 245–250 (2002).

    Google Scholar 

  58. Lorenzo, L.E., Ramien, M., St Louis, M., De Koninck, Y. & Ribeiro-da-Silva, A. Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat. J. Comp. Neurol. 508, 592–604 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Bachand for technical assistance with behavior, F. Rassendren (INSERM) for P2rx4−/− mice, C.J. Evans (National Institute on Drug Abuse) for (+)naloxone and J. Vlahakis for (+)naloxone polarimetric analysis. This paper is dedicated to the memory of Karen Vandal, who passed away during the course of this study. This work was supported by Canadian Institutes for Health Research (CIHR) grants to Y.D.K., M.W.S., C.M.C. and J.-M.B., by the Krembil Foundation (Y.D.K. and M.W.S.), the Regione Piemonte/University of Turin Fellowship Program (F.F.), the CIHR Fellowship program (T.T. and L.-E.L.), the Howard Hughes Medical Institute (M.W.S.), the Anne and Max Tanenbaum Chair Program (M.W.S.), the Canada Research Chairs Program (C.M.C., J.-M.B. and M.W.S.), the Fonds de la recherche en santé du Québec Chercheur National Program (Y.D.K.) and the Ontario Research Fund Research Excellence Program (M.W.S.).

Author information

Authors and Affiliations

Authors

Contributions

F.F., T.T., C.M.C., M.W.S. and Y.D.K. conceived and designed the project. C.M.C., J.-M.B., Y.D.K. and M.W.S. supervised the experiments. F.F., T.T., T.-A.M.M., S.L., T.D., L.-E.L., A.C., W.Z., D.M., S.B. and K.V. performed the experiments. N.D. performed computer simulations and contributed to interpretation of results. S.B. generated CD11b-cre; BdnfloxP/loxP mice. F.F., T.T., T.-A.M.M., S.L., T.D., L.-E.L., A.C., N.D., W.Z. and A.G.G. analyzed the data. F.F., T.T., M.W.S. and Y.D.K. wrote the manuscript. All of the authors read and discussed the manuscript.

Corresponding author

Correspondence to Yves De Koninck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrini, F., Trang, T., Mattioli, TA. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat Neurosci 16, 183–192 (2013). https://doi.org/10.1038/nn.3295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing