Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of NR1/NR2B NMDA receptors

Abstract

N-methyl-D-aspartate (NMDA) receptors are highly expressed in the central nervous system and are involved in excitatory synaptic transmission as well as synaptic plasticity. Despite considerable structural and biophysical research, the mechanism behind activation of the NMDA receptor is still poorly understood. By analyzing patch clamp recordings of one channel activated by glutamate, we determined the burst structure and open probability for recombinant rat NR1/NR2B receptors. We used partial agonists at the glutamate and glycine binding sites to show that at least two kinetically distinct subunit-associated conformational changes link co-agonist binding to the opening of the NMDA receptor pore. These data suggest that NR1 and NR2B subunits, respectively, undergo a fast and slow agonist-dependent conformational change that precedes opening of the pore. We propose a new working model of receptor activation that can account for macroscopic as well as microscopic NMDA receptor properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Burst properties of individual NMDA receptor activations.
Figure 2: Macroscopic properties of NR1/NR2B NMDA receptors.
Figure 3: Subunit-dependent contributions to NMDA receptor gating.
Figure 4: A model of NMDA receptor activation showing binding and activation of NMDA receptors, incorporating structural ideas about the pore region of the potassium channel31,32 and the GluR2 agonist binding pocket22,33.
Figure 5: A physical model of NMDA receptor activation.
Figure 6: Simulated responses to glycine and glutamate partial agonists.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  Google Scholar 

  2. Lester, R.A., Clements, J.D., Westbrook, G.L. & Jahr, C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990).

    Article  CAS  Google Scholar 

  3. Jahr, C.E. High-probability opening of NMDA receptor channels by L-glutamate. Science 255, 470–472 (1992).

    Article  CAS  Google Scholar 

  4. Edmonds, B. & Colquhoun, D. Rapid decay of averaged single-channel NMDA receptor activations recorded at low agonist concentration. Proc. R. Soc. Lond. B Biol. Sci. 250, 279–286 (1992).

    Article  CAS  Google Scholar 

  5. Premkumar, L.S., Qin, F. & Auerbach, A. Subconductance states of a mutant NMDA receptor channel kinetics, calcium and voltage dependence. J. Gen. Physiol. 109, 181–189 (1997).

    Article  CAS  Google Scholar 

  6. Anson, L.C., Schoepfer, R., Colquhoun, D. & Wyllie, D.J. Single-channel analysis of an NMDA receptor possessing a mutation in the region of the glutamate binding site. J. Physiol. 527, 225–237 (2000).

    Article  CAS  Google Scholar 

  7. Gibb, A.J. & Colquhoun, D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. 456, 143–179 (1992).

    Article  CAS  Google Scholar 

  8. Lester, R.A. & Jahr, C.E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992).

    Article  CAS  Google Scholar 

  9. Schneggenburger, R. & Ascher, P. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177 (1997).

    Article  CAS  Google Scholar 

  10. Chen, N., Luo, T. & Raymond, L.A. Subtype-dependence of NMDA receptor channel open probability. J. Neurosci. 19, 6844–6854 (1999).

    Article  CAS  Google Scholar 

  11. Rosenmund, C., Feltz, A. & Westbrook, G.L. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795 (1995).

    Article  CAS  Google Scholar 

  12. Colquhoun, D. & Hawkes, A.G. Stochastic properties of ion channel openings and bursts in a membrane patch that contains two chanels: evidence concerning the number of channels present when a record containing only single openings is observed. Proc. R. Soc. Lond. B Biol. Sci. 240, 453–477 (1990).

    Article  CAS  Google Scholar 

  13. Horn, R. Estimating the number of channels in patch recording. Biophys. J. 60, 433–439 (1991).

    Article  CAS  Google Scholar 

  14. Rosenmund, C., Stern-Bach, Y. & Stevens, C.F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  CAS  Google Scholar 

  15. Perozo, E. New structural perspectives on K+ channel gating. Structure 10, 1027–1029 (2002).

    Article  CAS  Google Scholar 

  16. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  Google Scholar 

  17. Mansour, M., Nagarajan, N., Nehring, R.B., Clements, J.D. & Rosenmund, C. Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 32, 841–853 (2001).

    Article  CAS  Google Scholar 

  18. Antoine R., Stacey N.I., Hughes, T.E. & Howe, J.R. Subunit interactions and AMPA receptor desensitization. J. Neurosci. 21, 5574–5586 (2001).

    Article  Google Scholar 

  19. Sobolevsky, A.I., Beck, C. & Wollmuth, L.P. Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33, 75–85 (2002).

    Article  CAS  Google Scholar 

  20. Jones, K.S., VanDongen, H.M.A. & VanDongen, A.M.J. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22, 2044–2053 (2002).

    Article  CAS  Google Scholar 

  21. Benveniste, M. & Mayer, M.L. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. 483, 367–385 (1995).

    Article  CAS  Google Scholar 

  22. Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    Article  CAS  Google Scholar 

  23. Careaga, C.L., Sutherland, J., Sabeti, J. & Falke, J.J. Large-amplitude twisting motions of an interdomain hinge: a disulfide trapping study of the galactose–glucose binding protein. Biochemistry 34, 3048–3055 (1995).

    Article  CAS  Google Scholar 

  24. Sobolevsky, A.I., Rooney, L. & Wollmuth, L.P. Staggering of subunits in NMDAR channels. Biophysical. J. 83, 3304–3314 (2002).

    Article  CAS  Google Scholar 

  25. Traynelis, S.F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  26. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  27. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  28. Colquhoun, D. & Sigworth, F.J. Fitting and statistical analysis of single-channel records. in Single-channel Recording 2nd edn. (eds. Sakmann, B. & Neher, E.) 483–585 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  29. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch clamp data containing missed events. Biophysical J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

  30. Qin, F., Auerbach, A. & Sachs, F. Maximum likelihood estimation of aggregated Markov processes. Proc. R. Soc. Lond. B Biol. Sci. 264, 375–383 (1997).

    Article  CAS  Google Scholar 

  31. Perozo, E., Cortes, D.M. & Cuello, L.G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  32. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  33. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the gluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  34. Akk, G., Zhou, M. & Auerbach, A. A mutational analysis of the acetylcholine receptor channel transmitter binding site. Biophys. J. 76, 207–218 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Heinemann for sharing NMDA receptor cDNAs and D. Colquhoun for helpful discussions and sharing of software. In addition, we thank T. Auerbach for helpful discussions, critical comments on the manuscript and for suggesting the experiments with partial agonists. We also thank K. Erreger, A. Gibb and S. Cull-Candy for providing helpful comments on the manuscript. This work was supported by an Alfred Benzon Foundation grant (T.B.), a Danish Medical Research Fellowship (T.B.) and the National Institutes of Health (NS36654, S.F.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tue G. Banke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banke, T., Traynelis, S. Activation of NR1/NR2B NMDA receptors. Nat Neurosci 6, 144–152 (2003). https://doi.org/10.1038/nn1000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing