Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic mobility of functional GABAA receptors at inhibitory synapses

Abstract

Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor α1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MTSES block of recombinant α1V257Cβ2γ2 GABAA receptors in HEK293 cells.
Figure 2: MTSES sensitivity of open and closed recombinant GABAA receptors in HEK293 cells.
Figure 3: Expressing functional mutant α1V257C-containing receptors in hippocampal neurons.
Figure 4: Synaptic GABAA receptor currents incorporating the α1V257C subunit in hippocampal neurons.
Figure 5: Evoked IPSCs in hippocampal neurons expressing α1V257C.
Figure 6: Non-stationary noise and kinetic analyses of synaptic GABAA receptors in α1V257C subunit–expressing hippocampal neurons.
Figure 7: Synaptic receptor mobility does not involve insertion from intracellular pools.

Similar content being viewed by others

References

  1. Li, Z. & Sheng, M. Some assembly required: the development of neuronal synapses. Nat. Rev. Mol. Cell Biol. 4, 833–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Stevens, C.F. Neurotransmitter release at central synapses. Neuron 40, 381–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Moss, S.J. & Smart, T.G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Connolly, C.N. et al. Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274, 36565–36572 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Connolly, C.N. et al. Subcellular localization and endocytosis of homomeric γ2 subunit splice variants of γ-aminobutyric acid type A receptors. Mol. Cell. Neurosci. 13, 259–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kittler, J.T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meier, J., Vannier, C., Serge, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4, 253–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kneussel, M. & Betz, H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 23, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kittler, J.T. et al. Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using γ2 subunit green fluorescent protein chimeras. Mol. Cell. Neurosci. 16, 440–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Tehrani, M.H. & Barnes, E.M., Jr. Agonist-dependent internalization of γ-aminobutyric acidA/benzodiazepine receptors in chick cortical neurons. J. Neurochem. 57, 1307–1312 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Barnes, E.M., Jr. Use-dependent regulation of GABAA receptors. Int. Rev. Neurobiol. 39, 53–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kittler, J.T. & Moss, S.J. Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol. 13, 341–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rasmussen, H., Rasmussen, T., Triller, A. & Vannier, C. Strychnine-blocked glycine receptor is removed from synapses by a shift in insertion/degradation equilibrium. Mol. Cell. Neurosci. 19, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, M. & Akabas, M.H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor α1 subunit. J. Gen. Physiol. 107, 195–205 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Sieghart, W. & Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2, 795–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Whiting, P.J., McKernan, R.M. & Wafford, K.A. Structure and pharmacology of vertebrate GABAA receptor subtypes. Int. Rev. Neurobiol. 38, 95–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Killisch, I., Dotti, C.G., Laurie, D.J., Luddens, H. & Seeburg, P.H. Expression patterns of GABAA receptor subtypes in developing hippocampal neurons. Neuron 7, 927–936 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J.-M. & Somogyi, P. Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939–11944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fritschy, J.-M. & Mohler, H. GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Fritschy, J.M., Paysan, J., Enna, A. & Mohler, H. Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J. Neurosci. 14, 5302–5324 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farrar, S.J., Whiting, P.J., Bonnert, T.P. & McKernan, R.M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100–10104 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Scotti, A.L. & Reuter, H. Synaptic and extrasynaptic γ-aminobutyric acid type A receptor clusters in rat hippocampal cultures during development. Proc. Natl. Acad. Sci. USA 98, 3489–3494 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hutcheon, B., Fritschy, J.M. & Poulter, M.O. Organization of GABA receptor α subunit clustering in the developing rat neocortex and hippocampus. Eur. J. Neurosci. 19, 2475–2487 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Holmgren, M., Liu, Y., Xu, Y. & Yellen, G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35, 797–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Connolly, C.N., Krishek, B.J., McDonald, B.J., Smart, T.G. & Moss, S.J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J. Biol. Chem. 271, 89–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. De Koninck, Y. & Mody, I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J. Neurophysiol. 71, 1318–1335 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Klausner, R.D., Donaldson, J.G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Chardin, P. & McCormick, F. Brefeldin A: the advantage of being uncompetitive. Cell 97, 153–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Lledo, P.M., Zhang, X., Sudhof, T.C., Malenka, R.C. & Nicoll, R.A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Benke, T.A., Jones, O.T., Collingridge, G.L. & Angelides, K.J. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc. Natl. Acad. Sci. USA 90, 7819–7823 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Velazquez, J.L., Thompson, C.L., Barnes, E.M., Jr. & Angelides, K.J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J. Neurosci. 9, 2163–2169 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kittler, J.T. et al. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating γ-aminobutyric acid type A receptor membrane trafficking. Proc. Natl. Acad. Sci. USA 101, 12736–12741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Essrich, C., Lorez, M., Benson, J.A., Fritschy, J.M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Mortensen, M. et al. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists. J. Physiol. (Lond.) 557, 389–413 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Wallace (UK Medical Research Council Ph.D. student) for assistance and I. Duguid and A. Gibb for helpful comments and discussions. This work was supported by the UK Medical Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G Smart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tracking the mobility of synaptic GABAA receptors in neurons. (GIF 33 kb)

Supplementary Fig. 2

Single cell time-course changes in mIPSC amplitudes for two representative hippocampal cells transfected with α1V257C. (GIF 18 kb)

Supplementary Fig. 3

Mobility of GABAA receptors in neurons. (GIF 26 kb)

Supplementary Methods (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Mortensen, M., Hosie, A. et al. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 8, 889–897 (2005). https://doi.org/10.1038/nn1483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing