Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of GPCRs modulates quantal size in chromaffin cells through Gβγ and PKC

Abstract

Exocytosis proceeds by either full fusion or 'kiss-and-run' between vesicle and plasma membrane. Switching between these two modes permits the cell to regulate the kinetics and amount of secretion. Here we show that ATP receptor activation reduces secretion downstream from cytosolic Ca2+ elevation in rat adrenal chromaffin cells. This reduction is mediated by activation of a pertussis toxin–sensitive Gi/o protein, leading to activation of Gβγ subunits, which promote the 'kiss-and-run' mode by reducing the total open time of the fusion pore during a vesicle fusion event. Furthermore, parallel activation of the muscarinic acetylcholine receptor removes the inhibitory effects of ATP on secretion. This is mediated by a Gq pathway through protein kinase C activation. The inhibitory effects of ATP and its reversal by protein kinase C activation are also shared by opioids and somatostatin. Thus, a variety of G protein pathways exist to modulate Ca2+-evoked secretion at specific steps in fusion pore formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP inhibits Ca2+-dependent secretion through multiple signaling pathways.
Figure 2: ATP modulates quantal size.
Figure 3: ATP inhibition was eliminated by blocking dynamin function.
Figure 4: Activation of PKC reverses the ATP-induced inhibition of secretion.
Figure 5: ATP inhibits secretion through activation of a Gi/o protein.
Figure 6: Gβγ subunits mediate the ATP-induced inhibition of secretion.
Figure 7: Somatostatin and the μ-receptor opioid, DAMGO, influence secretion in a manner similar to ATP.
Figure 8: Endogenous reduction of quantal size by Gi/o activation.

Similar content being viewed by others

References

  1. Ales, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat. Cell Biol. 1, 40–44 (1999).

    Article  CAS  Google Scholar 

  2. Alvarez de Toledo, G., Fernandez-Chacon, R. & Fernandez, J.M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993).

    Article  CAS  Google Scholar 

  3. Zhou, Z., Misler, S. & Chow, R.H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543–1552 (1996).

    Article  CAS  Google Scholar 

  4. Elhamdani, A., Palfrey, H.C. & Artalejo, C.R. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31, 819–830 (2001).

    Article  CAS  Google Scholar 

  5. Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).

    Article  CAS  Google Scholar 

  6. Miller, R.J. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 38, 201–227 (1998).

    Article  CAS  Google Scholar 

  7. Wu, L.G. & Saggau, P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 20, 204–212 (1997).

    Article  CAS  Google Scholar 

  8. Hamm, H.E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  Google Scholar 

  9. Gillis, K.D., Mossner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  Google Scholar 

  10. Stevens, C.F. & Sullivan, J.M. Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21, 885–893 (1998).

    Article  CAS  Google Scholar 

  11. Sakaba, T. & Neher, E. Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424, 775–778 (2003).

    Article  CAS  Google Scholar 

  12. Chow, R.H., von Ruden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    Article  CAS  Google Scholar 

  13. Zhou, Z. & Misler, S. Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells. J. Biol. Chem. 270, 3498–3505 (1995).

    Article  CAS  Google Scholar 

  14. Artalejo, A.R. Electrical properties of adrenal chromaffin cells. in Electrophysiology of Neuroendocrine Cells (eds. Scherubl, H. & Hescheler, J.) 259–294 (CRC, Boca Raton, Florida, 1995).

    Google Scholar 

  15. Neely, A. & Lingle, C.J. Effects of muscarine on single rat adrenal chromaffin cells. J. Physiol. (Lond.) 453, 133–166 (1992).

    Article  CAS  Google Scholar 

  16. Livett, B.G. & Boksa, P. Receptors and receptor modulation in cultured chromaffin cells. Can. J. Physiol. Pharmacol. 62, 467–476 (1984).

    Article  CAS  Google Scholar 

  17. Ennion, S.J., Powell, A.D. & Seward, E.P. Identification of the P2Y(12) receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells. Mol. Pharmacol. 66, 601–611 (2004).

    Article  CAS  Google Scholar 

  18. Powell, A.D., Teschemacher, A.G. & Seward, E.P. P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J. Neurosci. 20, 606–616 (2000).

    Article  CAS  Google Scholar 

  19. Augustine, G.J. & Neher, E. Calcium requirements for secretion in bovine chromaffin cells. J. Physiol. (Lond.) 450, 247–271 (1992).

    Article  CAS  Google Scholar 

  20. Dodge, F.A., Jr . & Rahamimoff, R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  21. Holroyd, P., Lang, T., Wenzel, D., De Camilli, P. & Jahn, R. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc. Natl. Acad. Sci. USA 99, 16806–16811 (2002).

    Article  CAS  Google Scholar 

  22. Graham, M.E., O'Callaghan, D.W., McMahon, H.T. & Burgoyne, R.D. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc. Natl. Acad. Sci. USA 99, 7124–7129 (2002).

    Article  CAS  Google Scholar 

  23. Wang, Y.T. & Linden, D.J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  24. Betz, A. et al. Munc13–1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123–136 (1998).

    Article  CAS  Google Scholar 

  25. Rhee, J.S. et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  Google Scholar 

  26. Nagy, G. et al. Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci. 22, 9278–9286 (2002).

    Article  CAS  Google Scholar 

  27. Graham, M.E., Fisher, R.J. & Burgoyne, R.D. Measurement of exocytosis by amperometry in adrenal chromaffin cells: effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie 82, 469–479 (2000).

    Article  CAS  Google Scholar 

  28. Currie, K.P. & Fox, A.P. ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16, 1027–1036 (1996).

    Article  CAS  Google Scholar 

  29. Neves, S.R., Ram, P.T. & Iyengar, R. G protein pathways. Science 296, 1636–1639 (2002).

    Article  CAS  Google Scholar 

  30. Blackmer, T. et al. G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292, 293–297 (2001).

    Article  CAS  Google Scholar 

  31. Goubaeva, F. et al. Stimulation of cellular signaling and G protein subunit dissociation by G protein betagamma subunit-binding peptides. J. Biol. Chem. 278, 19634–19641 (2003).

    Article  CAS  Google Scholar 

  32. Scott, J.K. et al. Evidence that a protein-protein interaction 'hot spot' on heterotrimeric G protein betagamma subunits is used for recognition of a subclass of effectors. EMBO J. 20, 767–776 (2001).

    Article  CAS  Google Scholar 

  33. He, C. et al. Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins. J. Biol. Chem. 277, 6088–6096 (2002).

    Article  CAS  Google Scholar 

  34. Carabelli, V., Carra, I. & Carbone, E. Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20, 1255–1268 (1998).

    Article  CAS  Google Scholar 

  35. Lim, W., Kim, S.J., Yan, H.D. & Kim, J. Ca2+-channel-dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Pflugers Arch. 435, 34–42 (1997).

    Article  CAS  Google Scholar 

  36. Jarvis, S.E. & Zamponi, G.W. Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol. Sci. 22, 519–525 (2001).

    Article  CAS  Google Scholar 

  37. Smith, C. A persistent activity-dependent facilitation in chromaffin cells is caused by Ca2+ activation of protein kinase C. J. Neurosci. 19, 589–598 (1999).

    Article  CAS  Google Scholar 

  38. Duan, K., Yu, X., Zhang, C. & Zhou, Z. Control of secretion by temporal patterns of action potentials in adrenal chromaffin cells. J. Neurosci. 23, 11235–11243 (2003).

    Article  CAS  Google Scholar 

  39. Zhang, C. & Zhou, Z. Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat. Neurosci. 5, 425–430 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. He for the Gβ1γ2 peptide, Y.T. Wang for the dynamin peptides and I. Bruce for reading the manuscript. This work was supported by grants from the National Basic Research Program of China (G2000077800 and 2006CB500800), the National Natural Science Foundation of China (30330210, 303328013 and C010505 to Z.Z.) and the US National Institutes of Health (DK46564 to C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dose-response curve of ATP inhibition of quantal size. (PDF 203 kb)

Supplementary Fig. 2

PMA enhances Ca2+-dependent secretion by increasing the number of release events but not quantal size or amperometric spike kinetics. (PDF 484 kb)

Supplementary Fig. 3

PMA inhibits digitonin-induced quantal size in rat adrenal chromaffin cells. (PDF 443 kb)

Supplementary Fig. 4

2-MeS-ATP reduces quantal size of caffeine-induced amperometric spike but has no effect on the caffeine-induced [Ca2+]i signal. (PDF 539 kb)

Supplementary Fig. 5

ATP reduces both quantal size and amperometric spike numbers in depolarization-induced secretion. (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XK., Wang, LC., Zhou, Y. et al. Activation of GPCRs modulates quantal size in chromaffin cells through Gβγ and PKC. Nat Neurosci 8, 1160–1168 (2005). https://doi.org/10.1038/nn1529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing