Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pigment epithelium–derived factor is a niche signal for neural stem cell renewal

Abstract

Adult stem cells are characterized by self-renewal and multilineage differentiation, and these properties seem to be regulated by signals from adjacent differentiated cell types and by extracellular matrix molecules, which collectively define the stem cell “niche.” Self-renewal is essential for the lifelong persistence of stem cells, but its regulation is poorly understood. In the mammalian brain, neurogenesis persists in two germinal areas, the subventricular zone (SVZ) and the hippocampus, where continuous postnatal neuronal production seems to be supported by neural stem cells (NSCs). Here we show that pigment epithelium–derived factor (PEDF) is secreted by components of the murine SVZ and promotes self-renewal of adult NSCs in vitro. In addition, intraventricular PEDF infusion activated slowly dividing stem cells, whereas a blockade of endogenous PEDF decreased their cycling. These data demonstrate that PEDF is a niche-derived regulator of adult NSCs and provide evidence for a role for PEDF protein in NSC maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PEDF is expressed by ependymal and endothelial cells, but not by NSCs, of the adult SVZ.
Figure 2: PEDF promotes self-renewal, but not proliferation, of adult NSCs isolated from the SVZ.
Figure 3: PEDF induces molecular changes that are associated with multipotentiality in adult NSCs.
Figure 4: C-ter PEDF blocks the effects of PEDF on a neurosphere assay.
Figure 5: Endogenous PEDF can promote self-renewal of adult NSCs.
Figure 6: PEDF activates B-cells in vivo.
Figure 7: PEDF modulates NSC self-renewal in vivo.

Similar content being viewed by others

References

  1. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).

    Article  CAS  Google Scholar 

  2. Palmer, T.D., Takahashi, J. & Gage, F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).

    Article  CAS  Google Scholar 

  3. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  4. Morshead, C.M., Craig, C.G. & van der Kooy, D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261 (1998).

    CAS  Google Scholar 

  5. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  6. Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    Article  CAS  Google Scholar 

  7. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  Google Scholar 

  8. Ferron, S. et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131, 4059–4070 (2004).

    Article  CAS  Google Scholar 

  9. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  Google Scholar 

  10. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  Google Scholar 

  11. Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S.A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).

    Article  CAS  Google Scholar 

  12. Shingo, T., Sorokan, S.T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).

    Article  CAS  Google Scholar 

  13. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  Google Scholar 

  14. Louissaint, A., Jr., Rao, S., Leventhal, C. & Goldman, S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  Google Scholar 

  15. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  16. Tombran-Tink, J., Chader, G.G. & Johnson, L.V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res. 53, 411–414 (1991).

    Article  CAS  Google Scholar 

  17. Steele, F.R., Chader, G.J., Johnson, L.V. & Tombran-Tink, J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc. Natl. Acad. Sci. USA 90, 1526–1530 (1993).

    Article  CAS  Google Scholar 

  18. Becerra, S.P., Sagasti, A., Spinella, P. & Notario, V. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J. Biol. Chem. 270, 25992–25999 (1995).

    Article  CAS  Google Scholar 

  19. Aparicio, S., Sawant, S., Lara, N., Barnstable, C.J. & Tombran-Tink, J. Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDF. Biochem. Biophys. Res. Commun. 326, 387–394 (2005).

    Article  CAS  Google Scholar 

  20. Kozaki, K. et al. Isolation, purification, and characterization of a collagen-associated serpin, caspin, produced by murine colon adenocarcinoma cells. J. Biol. Chem. 273, 15125–15130 (1998).

    Article  CAS  Google Scholar 

  21. Meyer, C., Notari, L. & Becerra, S.P. Mapping the type I collagen-binding site on pigment epithelium-derived factor. Implications for its antiangiogenic activity. J. Biol. Chem. 277, 45400–45407 (2002).

    Article  CAS  Google Scholar 

  22. Bilak, M.M. et al. Identification of the neuroprotective molecular region of pigment epithelium-derived factor and its binding sites on motor neurons. J. Neurosci. 22, 9378–9386 (2002).

    Article  CAS  Google Scholar 

  23. Araki, T., Taniwaki, T., Becerra, S.P., Chader, G.J. & Schwartz, J.P. Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J. Neurosci. Res. 53, 7–15 (1998).

    Article  CAS  Google Scholar 

  24. Dawson, D.W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  Google Scholar 

  25. Sugita, Y., Becerra, S.P., Chader, G.J. & Schwartz, J.P. Pigment epithelium-derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes. J. Neurosci. Res. 49, 710–718.

  26. Pignolo, R.J., Francis, M.K., Rotenberg, M.O. & Cristofalo, V.J. Putative role for EPC-1/PEDF in the G0 growth arrest of human diploid fibroblasts. J. Cell. Physiol. 195, 12–20 (2003).

    Article  CAS  Google Scholar 

  27. Tombran-Tink, J. & Barnstable, C.J. PEDF: a multifaceted neurotrophic factor. Nat. Rev. Neurosci. 4, 628–636 (2003).

    Article  CAS  Google Scholar 

  28. Ortego, J., Escribano, J., Becerra, S.P. & Coca-Prados, M. Gene expression of the neurotrophic pigment epithelium-derived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest. Ophthalmol. Vis. Sci. 37, 2759–2767 (1996).

    CAS  PubMed  Google Scholar 

  29. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  30. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  Google Scholar 

  31. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  Google Scholar 

  32. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  Google Scholar 

  33. Bylund, M., Andersson, E., Novitch, B.G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168 (2003).

    Article  CAS  Google Scholar 

  34. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  Google Scholar 

  35. Ferri, A.L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  Google Scholar 

  36. Alberdi, E., Aymerich, M.S. & Becerra, S.P. Binding of pigment epithelium-derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons. Evidence for a PEDF receptor. J. Biol. Chem. 274, 31605–31612 (1999).

    Article  CAS  Google Scholar 

  37. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  Google Scholar 

  38. Lim, D.A. & Alvarez-Buylla, A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. USA 96, 7526–7531 (1999).

    Article  CAS  Google Scholar 

  39. Craig, C.G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  Google Scholar 

  40. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J. & Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  Google Scholar 

  41. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  Google Scholar 

  42. Zigova, T., Pencea, V., Wiegand, S.J. & Luskin, M.B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245 (1998).

    Article  CAS  Google Scholar 

  43. Mercier, F., Kitasako, J.T. & Hatton, G.I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451, 170–188 (2002).

    Article  Google Scholar 

  44. Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  Google Scholar 

  45. Molofsky, A.V., Pardal, R. & Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707 (2004).

    Article  CAS  Google Scholar 

  46. Herrera, D.G., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Hermenegildo for help with cultures of umbilical cord vascular cells, F. Sánchez-Madrid for antibodies to V-cadherin and M. Cano-Jaimez and I. Marín for reading the manuscript. This work was supported by grants from the Ministerio de Educación y Ciencia (MEC; SAF2002-03355) and Ministerio de Sanidad y Consumo (G03/167 and 210) to I.F., and from the Ministerio de Ciencia y Tecnología (SAF2002-03086), Consejería de Sanidad de la Junta de Comunidades de Castilla-La Mancha (GC-03-014 and 02021-00) and Spanish Network for Neurological Research (CIEN, C03/06) to J.E. C.R.-C. was supported by a MEC Postdoctoral Fellowship, and C.A.-A. and J.D.A.-A. are predoctoral fellows of the MEC-FPU (Formación de Profesorado Universitairo) Program and the Consejeria de Sanidad de Castilla-La Mancha, Spain, respectively. P.S. and H.M. are investigators of the Programa Ramón y Cajal from the MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Fariñas.

Ethics declarations

Competing interests

The authors of the paper are filing a patent on the effect of PEDF on stem cell renewal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Castillejo, C., Sánchez-Sánchez, F., Andreu-Agulló, C. et al. Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9, 331–339 (2006). https://doi.org/10.1038/nn1657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing