Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors

Abstract

Surface expression of the nicotinic acetylcholine receptor (AChR) requires the assembly of multiple subunits in the endoplasmic reticulum (ER). Little is known, however, about the mechanism by which assembled receptor pentamers are transported to the cell membrane while unassembled subunits are retained in the ER. Here we report that a motif conserved in the transmembrane domain of AChR subunits is critically involved in this process. In COS cells, mutation within this signal allowed surface expression of unassembled subunits. Conversely, insertion of the sequence to unrelated proteins that are normally transported to the surface resulted in ER retention. The signal is buried in AChR pentamers, but is exposed on unassembled subunits in the ER, where it promotes protein degradation. We therefore conclude that this signal ensures surface trafficking of only functional AChRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface expression of nicotinic AChR requires the assembly of multiple subunits into a pentamer.
Figure 2: The M1 domain prevents surface expression of unassembled AChR α subunits.
Figure 3: Proteins containing the M1 domain of the AChR α subunit are retained in the ER.
Figure 4: Molecular determinants that prevent surface expression of unassembled subunit.
Figure 5: The membrane signal confers retention to unrelated proteins and to the β, γ and δ subunits of the AChR.
Figure 6: The ER retention signal is buried in AChR pentamers, but is exposed on unassembled subunits and assembly intermediates.
Figure 7: The ER retention signal promotes protein degradation.

Similar content being viewed by others

References

  1. Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, M.M., Lindstrom, J. & Merlie, J.P. Formation of the α-bungarotoxin binding site and assembly of the acetylcholine receptor subunits occur in the endoplasmic reticulum. J. Biol. Chem. 262, 4367–4376 (1987).

    CAS  PubMed  Google Scholar 

  3. Verrall, S. & Hall, Z.W. The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell 68, 23–31 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Blount, P., McHardy, M.S. & Merlie, J.P. Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J. Cell Biol. 111, 2601–2611 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Gu, Y., Forsayeth, J.R., Verrall, S., Yu, X.-M. & Hall, Z.W. Assembly of the mammalian acetylcholine receptor in transfected COS cells. J. Cell Biol. 114, 799–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Saedi, M.S., Conroy, W.G. & Lindstrom, J. Assembly of Torpedo acetylcholine receptors in Xenopus oocytes. J. Cell Biol. 112, 1007–1015 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Merlie, J.P. & Lindstrom, J. Assembly in vivo of mouse muscle acetylcholine receptor: identification of an α subunit species that may be an assembly intermediate. Cell 34, 747–757 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Blount, P. & Merlie, J.P. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. J. Cell Biol. 111, 2613–2622 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Green, W.N. & Claudio, T. Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell 74, 57–69 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kreienkamp, H.J., Maeda, R.K., Sine, S.M. & Taylor, P. Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron 14, 635–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Nicke, A., Rettinger, J., Mutschler, E. & Schmalzing, G. Blue native PAGE as a useful method for the analysis of the assembly of distinct combinations of nicotinic acetylcholine receptor subunits. J. Recept. Signal Transduct. Res. 19, 493–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Black, R., Goldman, D., Hochschwender, S., Lindstrom, J. & Hall, Z.W. Genetic variants of C2 muscle cells that are defective in synthesis of the α-subunit of the acetylcholine receptor. J. Cell Biol. 105, 1329–1336 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Gu, Y., Ralston, E., Murhy-Erdosh, C., Black, R. & Hall, Z.W. Acetylcholine receptor in a C2 muscle cell variant is retained in the endoplasmic reticulum. J. Cell Biol. 109, 729–738 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Lindstrom, J. in Ion Channels Vol. 4 (ed. Narahashi, T.) 377–450 (Plenum, New York, 1996).

    Book  Google Scholar 

  15. Barnes, E.M. Intracellular trafficking of GABAA receptors. Life Sci. 66, 1063–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Griffon, N. et al. Molecular determinants of glycine receptor subunit assembly. EMBO J. 18, 4711–4721 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5, 318–323 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Gu, Y., Franco, A., Gardner, P.D., Lansman, J.B. & Hall, Z.W. Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron 5, 147–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Guillick, W. & Lindstrom, J. Mapping the binding of monoclonal antibodies to the acetylcholine receptor form Torpedo californica. Biochemistry 22, 3312–3320 (1983).

    Article  Google Scholar 

  20. Ratnam, M. et al. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry 25, 2621–2632 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Froehner, S.C., Douville, K., Klink, S. & Culp, W.J. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J. Biol. Chem. 258, 7112–7120 (1983).

    CAS  PubMed  Google Scholar 

  22. Kurosaki, T. et al. Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett. 214, 253–258 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Sine, S.M. & Claudio, T. Stable expression of the mouse nicotinic acetylcholine receptor in mouse fibroblasts. Comparison of receptors in native and transfected cells. J. Biol. Chem. 266, 13679–13689 (1991).

    CAS  PubMed  Google Scholar 

  24. Wang, Z.-Z., Hardy, S.F. & Hall, Z.W. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated α and δ subunits are required for heterodimer formation. J. Biol. Chem. 271, 27575–27584 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Bonifacino, J.S., Suzuki, C.K. & Klausner, R.D. A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum. Science 247, 79–82 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Blount, P. & Merlie, J.P. Native folding of an acetylcholine receptor alpha subunit expressed in the absence of other receptor subunits. J. Biol. Chem. 263, 1072–1080 (1988).

    CAS  PubMed  Google Scholar 

  27. Nilsson, T. & Warren, G. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr. Opin. Cell Biol. 6, 517–521 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yang, M., Ellenberg, J., Bonifacino, J.S. & Weissman, A.M. The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum. J. Biol. Chem. 272, 1970–1975 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bonifacino, J.S. & Lippincott-Schwartz, J. Degradation of proteins within the endoplasmic reticulum. Curr. Opin. Cell Biol. 3, 592–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Murakami, K., Mihara, K. & Omura, T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J. Biochem. (Tokyo) 116, 164–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Keller, S.H., Lindstrom, J., Ellisman, M. & Taylor, P. Adjacent basic amino acid residues recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor αl. J. Biol. Chem. 276, 18384–18391 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Fewell, S.W., Travers, K.J., Weissman, J.S. & Brodsky, J.L. The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet. 35, 149–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dineley, K.T. & Patrick, J.W. Amino acid determinants of α7 nicotinic acetylcholine receptor surface expression. J. Biol. Chem. 275, 13974–13985 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z.-Z., Hardy, S.F. & Hall, Z.W. Membrane tethering enables an extracellular domain of the acetylcholine receptor α subunit to form a heterodimeric ligand-binding site. J. Cell Biol. 135, 809–817 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Blount, P. & Merlie, J.P. BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. J. Cell Biol. 113, 1125–1132 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Forsayeth, J.R., Gu, Y. & Hall, Z.W. BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. J. Cell Biol. 117, 841–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Gelman, M.S., Chang, W., Thomas, D.Y., Bergeron, J.J. & Prives, J.M. Role of the endoplasmic reticulum chaperone calnexin in subunit folding and assembly of nicotinic acetylcholine receptors. J. Biol. Chem. 270, 15085–15092 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Chandler, L.P., Chandler, C.E., Hosang, M. & Shooter, E.M. A monoclonal antibody which inhibits epidermal growth factor binding has opposite effects on the biological action of epidermal growth factor in different cells. J. Biol. Chem. 260, 3360–3367 (1985).

    CAS  PubMed  Google Scholar 

  39. Malek, T.R., Robb, R.J. & Shevach, E.M. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. Proc. Natl. Acad. Sci. USA 80, 5694–5698 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant RO1-NS38301 and the Muscular Dystrophy Association (Z.Z.W.). We thank E. Aizenman, Y.J. Liu and G.A. Herin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Zhong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JM., Zhang, L., Yao, Y. et al. A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci 5, 963–970 (2002). https://doi.org/10.1038/nn918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing