Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells

This article has been updated

Abstract

Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.

*Note: In the version of this article initially published online, the article’s page numbers should have been 1278–1286. In addition, the numbered items in Step 2 did not correspond to the format of the HTML version. In Steps 2–13, the locations of the TROUBLESHOOTING headings did not correspond to the Troubleshooting table. These errors have been corrected in the PDF version of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram representing the principle of the BiFC assay.
Figure 2: Combinations of fusion proteins to be tested for bimolecular fluorescence complementation.
Figure 3: Determination of the specificity of bimolecular fluorescence complementation by mutational analysis.

Similar content being viewed by others

Change history

  • 30 November 2006

    In the version of this article initially published online, the article’s page numbers should have been 1278–1286. In addition, the numbered items in Step 2 did not correspond to the format of the HTML version. In Steps 2–13, the locations of the TROUBLESHOOTING headings did not correspond to the Troubleshooting table. These errors have been corrected in the PDF version of the article.

References

  1. Förster, T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  2. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  3. Brock, R. & Jovin, T.M. Fluorescence correlation microscopy (FCM)-fluorescence correlation spectroscopy (FCS) taken into the cell. Cell. Mol. Biol. 44, 847–856 (1998).

    CAS  PubMed  Google Scholar 

  4. Baudendistel, N., Muller, G., Waldeck, W., Angel, P. & Langowski, J. Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo . Chemphyschem. 6, 984–990 (2005).

    Article  CAS  Google Scholar 

  5. Petersen, N.O., Hoddelius, P.L., Wiseman, P.W., Seger, O. & Magnusson, K.E. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65, 1135–1146 (1993).

    Article  CAS  Google Scholar 

  6. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo . Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  Google Scholar 

  7. Rossi, F., Charlton, C.A. & Blau, H.M. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl Acad. Sci. USA 94, 8405–8410 (1997).

    Article  CAS  Google Scholar 

  8. Pelletier, J.N., Campbell-Valois, F.X. & Michnick, S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA 95, 12141–12146 (1998).

    Article  CAS  Google Scholar 

  9. Kerppola, T.K. Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449–456 (2006).

    Article  CAS  Google Scholar 

  10. Grinberg, A.V., Hu, C.D. & Kerppola, T.K. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell. Biol. 24, 4294–4308 (2004).

    Article  CAS  Google Scholar 

  11. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

  12. Fang, D.Y. & Kerppola, T.K. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc. Natl Acad. Sci. USA 101, 14782–14787 (2004).

    Article  CAS  Google Scholar 

  13. Zamyatnin, A.A. et al. Assessment of the integral membrane protein topology in living cells. Plant J. 46, 145–154 (2006).

    Article  CAS  Google Scholar 

  14. MacDonald, M.L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  15. Demidov, V.V. et al. Fast complementation of split fluorescent protein triggered by DNA hybridization. Proc. Natl. Acad. Sci. USA 103, 2052–2056 (2006).

    Article  CAS  Google Scholar 

  16. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  17. Magliery, T.J. et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: Scope and mechanism. J. Am. Chem. Soc. 127, 146–157 (2005).

    Article  CAS  Google Scholar 

  18. Guo, Y.J., Rebecchi, M. & Scarlata, S. Phospholipase C beta(2) binds to and inhibits phospholipase C delta(1). J. Biol. Chem. 280, 1438–1447 (2005).

    Article  CAS  Google Scholar 

  19. Schmidt, C. et al. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappa B activation. Mol. Cell 12, 1287–1300 (2003).

    Article  CAS  Google Scholar 

  20. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  21. Shyu, Y.J., Liu, H., Deng, X. & Hu, C.D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61–66 (2006).

    Article  CAS  Google Scholar 

  22. von der Lehr, N. et al. The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  23. Deppmann, C.D., Thornton, T.M., Utama, F.E. & Taparowsky, E.J. Phosphorylation of BATF regulates DNA binding: a novel mechanism for AP-1 (activator protein-1) regulation. Biochem. J. 374, 423–431 (2003).

    Article  CAS  Google Scholar 

  24. Rajaram, N. & Kerppola, T.K. Synergistic transcription activation by Maf and Sox and their subnuclear localization are disrupted by a mutation in Maf that causes cataract. Mol. Cell. Biol. 24, 5694–5709 (2004).

    Article  CAS  Google Scholar 

  25. Zhu, L.Q. et al. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol. Cell. Biol. 24, 2673–2681 (2004).

    Article  CAS  Google Scholar 

  26. Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13, 33–43 (2004).

    Article  CAS  Google Scholar 

  27. Farina, A. et al. Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol. Cell. Biol. 24, 9059–9069 (2004).

    Article  CAS  Google Scholar 

  28. Jang, M.K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  29. Remy, I., Montmarquette, A. & Michnick, S.W. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat. Cell Biol. 6, 358–365 (2004).

    Article  CAS  Google Scholar 

  30. Remy, I. & Michnick, S.W. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Biol. 24, 1493–1504 (2004).

    Article  CAS  Google Scholar 

  31. Laricchia-Robbio, L. et al. Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages. PNAS 102, 14368–14373 (2005).

    Article  CAS  Google Scholar 

  32. Hoff, B. & Kuck, U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum . Curr. Genet. 47, 132–138 (2005).

    Article  CAS  Google Scholar 

  33. Blondel, M. et al. Degradation of Hof1 by SCFGrr1 is important for actomyosin contraction during cytokinesis in yeast. EMBO J. 24, 1440–1452 (2005).

    Article  CAS  Google Scholar 

  34. Stolpe, T. et al. In planta analysis of protein-protein interactions related to light signaling by bimolecular fluorescence complementation. Protoplasma 226, 137–146 (2005).

    Article  CAS  Google Scholar 

  35. Marrocco, K. et al. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J. 45, 423–438 (2006).

    Article  CAS  Google Scholar 

  36. Atmakuri, K., Ding, Z.Y. & Christie, P.J. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens . Mol. Microbiol. 49, 1699–1713 (2003).

    Article  CAS  Google Scholar 

  37. Tzfira, T., Vaidya, M. & Citovsky, V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium . Nature 431, 87–92 (2004).

    Article  CAS  Google Scholar 

  38. Loyter, A. et al. The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol. 138, 1318–1321 (2005).

    Article  CAS  Google Scholar 

  39. Li, J.X., Krichevsky, A., Vaidya, M., Tzfira, T. & Citovsky, V. Uncoupling of the functions of the Arabidopsis VIN protein in transient and stable plant genetic transformation by Agrobacterium . Proc. Natl. Acad. Sci. USA 102, 5733–5738 (2005).

    Article  CAS  Google Scholar 

  40. Lacroix, B., Vaidya, M., Tzfira, T. & Citovsky, V. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J. 24, 428–437 (2005).

    Article  CAS  Google Scholar 

  41. Hynes, T.R., Mervine, S.M., Yost, E.A., Sabo, J.L. & Berlot, C.H. Live cell imaging of G(s) and the beta(2)-adrenergic receptor demonstrates that both alpha(s) and beta(1)gamma(7) internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta(2)-adrenergic receptor. J. Biol. Chem. 279, 44101–44112 (2004).

    Article  CAS  Google Scholar 

  42. Hynes, T.R. et al. Visualization of g protein beta gamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J. Biol. Chem. 279, 30279–30286 (2004).

    Article  CAS  Google Scholar 

  43. Takahashi, Y. et al. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol. Cell. Biol. 25, 9369–9382 (2005).

    Article  CAS  Google Scholar 

  44. Blumenstein, A. et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 1833–1838 (2005).

    Article  CAS  Google Scholar 

  45. Tsuchisaka, A. & Theologis, A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc. Natl. Acad. Sci. USA 101, 2275–2280 (2004).

    Article  CAS  Google Scholar 

  46. Ozalp, C., Szczesna-Skorupa, E. & Kemper, B. Bimolecular fluorescence complementation analysis of cytochrome P4502C2, 2E1, and NADPH-cytochrome P450 reductase molecular interactions in living cells. Drug Metabolism and Disposition 33, 1382–1390 (2005).

    Article  CAS  Google Scholar 

  47. Szczesna-Skorupa, E. & Kemper, B. BAP31 is involved in the retention of cytochrome P4502C2 in the endoplasmic reticulum. J. Biol. Chem. 281, 4142–4148 (2006).

    Article  CAS  Google Scholar 

  48. deVirgilio, M., Kiosses, W.B. & Shattil, S.J. Proximal, selective, and dynamic interactions between integrin alpha II beta 3 and protein tyrosine kinases in living cells. J. Cell Biol. 165, 305–311 (2004).

    Article  CAS  Google Scholar 

  49. Niu, T.K., Pfeifer, A.C., Lippincott-Schwartz, J. & Jackson, C.L. Dynamics of GBF1, a brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell 16, 1213–1222 (2005).

    Article  CAS  Google Scholar 

  50. Nyfeler, B., Michnick, S.W. & Hauri, H.P. Capturing protein interactions in the secretory pathway of living cells. Proc. Natl. Acad. Sci. USA 102, 6350–6355 (2005).

    Article  CAS  Google Scholar 

  51. Giese, B. et al. Dimerization of the cytokine receptors gp130 and LIFR analysed in single cells. J. Cell Sci. 118, 5129–5140 (2005).

    Article  CAS  Google Scholar 

  52. Rackham, O. & Brown, C.M. Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23, 3346–3355 (2004).

    Article  CAS  Google Scholar 

  53. Ye, H.H., Choi, H.J., Poe, J. & Smithgall, T.E. Oligomerization is required for HIV-1 nef-induced activation of the Src family protein-tyrosine kinase, Hck. Biochemistry 43, 15775–15784 (2004).

    Article  CAS  Google Scholar 

  54. Schmidt, U., Richter, K., Berger, A.B. & Lichter, P. In vivo BiFC analysis of Y14 and NXF1 mRNA export complexes: preferential localization within and around SC35 domains. J. Cell Biol. 172, 373–381 (2006).

    Article  CAS  Google Scholar 

  55. Bracha-Drori, K. et al. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40, 419–427 (2004).

    Article  CAS  Google Scholar 

  56. Walter, M. et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438 (2004).

    Article  CAS  Google Scholar 

  57. Hackbusch, J., Richter, K., Muller, J., Salamini, F. & Uhrig, J.F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc. Natl. Acad. Sci. USA 102, 4908–4912 (2005).

    Article  CAS  Google Scholar 

  58. Diaz, I., Martinez, M., Isabel-LaMoneda, I., Rubio-Somoza, I. & Carbonero, P. The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J. 42, 652–662 (2005).

    Article  CAS  Google Scholar 

  59. Shimizu, H. et al. LIP19, a basic region leucine zipper protein, is a fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol. 46, 1623–1634 (2005).

    Article  CAS  Google Scholar 

  60. Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005).

    Article  CAS  Google Scholar 

  61. Maple, J., Aldridge, C. & Moller, S.G. Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 43, 811–823 (2005).

    Article  CAS  Google Scholar 

  62. MacDonald, M.L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  63. Ding, Y.H., Liu, N.Y., Tang, Z.S., Liu, J. & Yang, W.C. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 18, 815–830 (2006).

    Article  CAS  Google Scholar 

  64. Wang, K.Z.Q. et al. TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and is mediated by an interaction with cytoplasmic Src. J. Cell Sci. 119, 1579–1591 (2006).

    Article  CAS  Google Scholar 

  65. Xu, X.M. & Moller, S.G. AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis . EMBO J. 25, 900–909 (2006).

    Article  CAS  Google Scholar 

  66. Chen, C.D., Oh, S.Y., Hinman, J.D. & Abraham, C.R. Visualization of APP dimerization and APP-Notch2 heterodimerization in living cells using bimolecular fluorescence complementation. J. Neurochem. 97, 30–43 (2006).

    Article  CAS  Google Scholar 

  67. Hu, C.-D. & Kerppola, T.K. in Protein-Protein Interactions (eds. Adams, P. & Golemis, E.) 673–693 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2005).

    Google Scholar 

  68. Liu, H. et al. Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J. 25, 1058–1069 (2006).

    Article  CAS  Google Scholar 

  69. Pazhouhandeh, M. et al. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc. Natl. Acad. Sci. USA 103, 1994–1999 (2006).

    Article  CAS  Google Scholar 

  70. Cascales, E., Atmakuri, K., Liu, Z., Binns, A.N. & Christie, P.J. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol. Microbiol. 58, 565–579 (2005).

    Article  CAS  Google Scholar 

  71. Stains, C.I., Porter, J.R., Ooi, A.T., Segal, D.J. & Ghosh, I. DNA sequence-enabled reassembly of the green fluorescent protein. J. Am. Chem. Soc. 127, 10782–10783 (2005).

    Article  CAS  Google Scholar 

  72. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank C.-D. Hu for his participation in the design and implementation of the BiFC assay in mammalian cells and all members of the Kerppola laboratory for their contributions to the improvement and adaptation of the BiFC approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom K Kerppola.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerppola, T. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1, 1278–1286 (2006). https://doi.org/10.1038/nprot.2006.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.201

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing