Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Culturing hippocampal neurons

Abstract

We provide protocols for preparing low-density dissociated-cell cultures of hippocampal neurons from embryonic rats or mice. The neurons are cultured on polylysine-treated coverslips, which are suspended above an astrocyte feeder layer and maintained in serum-free medium. When cultured according to this protocol, hippocampal neurons become appropriately polarized, develop extensive axonal and dendritic arbors and form numerous, functional synaptic connections with one another. Hippocampal cultures have been used widely for visualizing the subcellular localization of endogenous or expressed proteins, for imaging protein trafficking and for defining the molecular mechanisms underlying the development of neuronal polarity, dendritic growth and synapse formation. Preparation of glial feeder cultures must begin 2 weeks in advance, and it takes 5 d to prepare coverslips as a substrate for neuronal growth. Dissecting the hippocampus and plating hippocampal neurons takes 2–3 h.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Phase-contrast images of hippocampal neurons during the first 4 d of culture.
Figure 3: Low-magnification phase-contrast images of hippocampal cultures plated after 1 d (a) and 13 d in culture (b).
Figure 4: Using selective markers to visualize axons and dendrites.
Figure 5: Initial segment markers can be used to visualize the origin of the axon.
Figure 6: Expressing GFP enables visualization of the complete arborization of an individual cell.
Figure 7: A Stage 5 neuron in a 3-week-old culture.

Similar content being viewed by others

References

  1. Benson, D.L., Watkins, F.H., Steward, O. & Banker, G. Characterization of GABAergic neurons in hippocampal cell cultures. J. Neurocytol. 23, 279–295 (1994).

    Article  CAS  Google Scholar 

  2. Banker, G.A. & Cowan, W.M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425 (1977).

    Article  CAS  Google Scholar 

  3. Brewer, G.J. & Cotman, C.W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74 (1989).

    Article  CAS  Google Scholar 

  4. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  5. Segal, M.M., Baughman, R.W., Jones, K.A. & Huettner, J.E. Mass cultures and microislands of neurons from postnatal rat brain. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 339–370 (The MIT Press, Cambridge, Massachusetts, USA, 1998).

    Google Scholar 

  6. Lester, R.A., Quarum, M.L., Parker, J.D., Weber, E. & Jahr, C.E. Interaction of 6-cyano-7-nitroquinoxaline-2,3-dione with the N-methyl-D-aspartate receptor-associated glycine binding site. Mol. Pharmacol. 35, 565–570 (1989).

    CAS  PubMed  Google Scholar 

  7. Brewer, G.J. & Price, P.J. Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. Neuroreport 7, 1509–1512 (1996).

    Article  CAS  Google Scholar 

  8. Bottenstein, J.E. & Sato, G.H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76, 514–517 (1979).

    Article  CAS  Google Scholar 

  9. Goslin, K., Asmussen, H. & Banker, G. Rat hippocampal neurons in low-density cultures. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 339–370 (The MIT Press, Cambridge, Massachusetts, USA, 1998).

    Google Scholar 

  10. Craig, A.M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  Google Scholar 

  11. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  12. Jacobson, C., Schnapp, B. & Banker, G.A. A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  Google Scholar 

  13. Arimura, N. & Kaibuchi, K. Key regulators in neuronal polarity. Neuron 48, 881–884 (2005).

    Article  CAS  Google Scholar 

  14. Wiggin, G.R., Fawcett, J.P. & Pawson, T. Polarity proteins in axon specification and synaptogenesis. Dev. Cell 8, 803–816 (2005).

    Article  CAS  Google Scholar 

  15. Fletcher, T.L. & Banker, G. The establishment of polarity by hippocampal neurons: the relationship between the stage of a cell's development in situ and its subsequent development in culture. Dev. Biol. 136, 446–455 (1989).

    Article  CAS  Google Scholar 

  16. Friedman, H.V., Bresler, T., Garner, C.C. & Ziv, N.E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000).

    Article  CAS  Google Scholar 

  17. Burack, M.A., Silverman, M.A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  Google Scholar 

  18. Wayman, G.A. et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909 (2006).

    Article  CAS  Google Scholar 

  19. Kuriu, T., Inoue, A., Bito, H., Sobue, K. & Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 26, 7693–7706 (2006).

    Article  CAS  Google Scholar 

  20. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  21. Craig, A.M., Graf, E.R. & Linhoff, M.W. How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20 (2006).

    Article  CAS  Google Scholar 

  22. Atluri, P.P. & Ryan, T.A. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J. Neurosci. 26, 2313–2320 (2006).

    Article  CAS  Google Scholar 

  23. Banker, G. & Goslin, K. (eds.) Culturing Nerve Cells (The MIT Press, Cambridge, Massachusetts, USA, 1998).

    Google Scholar 

  24. Washbourne, P. & McAllister, A.K. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–573 (2002).

    Article  CAS  Google Scholar 

  25. Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Prot. 1, 695 (2006).

    Article  CAS  Google Scholar 

  26. Gartner, A., Collin, L. & Lalli, G. Nucleofection of primary neurons. Methods Enzymol. 406, 374–388 (2006).

    Article  CAS  Google Scholar 

  27. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  28. Kozak, M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47, 1–45 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Velden, A.W., Voorma, H.O. & Thomas, A.A. Vector design for optimal protein expression. Biotechniques 31, 572–580 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in our laboratory is supported by US National Institutes of Health grants NS17112 and MH66179. Our thanks to all past and present members of the lab, who have contributed so much to these protocols and whose work has underscored the truth of the ancient maxim, in vitro veritas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Banker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaech, S., Banker, G. Culturing hippocampal neurons. Nat Protoc 1, 2406–2415 (2006). https://doi.org/10.1038/nprot.2006.356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.356

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing