Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Promoting apoptosis as a strategy for cancer drug discovery

A Corrigendum to this article was published on 01 December 2005

Key Points

  • In many cancers, the normal process for eliminating unwanted cells (apoptosis) is deregulated.

  • The deregulation of apoptosis leads to the unchecked growth of tumours and the development of resistance to chemotherapy.

  • Drugs that restore apoptosis might selectively kill cancer cells that have triggered a death signal and have become dependent on the deregulation of apoptosis pathways.

  • Agonistic antibodies against the tumour-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and a soluble, truncated TRAIL ligand are in phase I/II clinical trials for the treatment of cancer.

  • BCL2 antisense oligonucleotides are in phase III clinical trials and pre-registration, and small-molecule BCL2-family inhibitors are in early phase I clinical trials and in late preclinical discovery for the treatment of chronic lymphocytic leukaemia and solid tumours.

  • IAP (inhibitor of apoptosis) protein inhibitors, MDM2 antagonists and other apoptosis-inducing compounds are under preclinical examination for possible use in cancer therapy.

  • For these compounds to succeed, it will be important to test them in well-designed clinical trials to determine the cancer patients that are most likely to respond to the particular agent, the optimum dose and schedule, and the best combination with other drugs.

Abstract

Apoptosis is deregulated in many cancers, making it difficult to kill tumours. Drugs that restore the normal apoptotic pathways have the potential for effectively treating cancers that depend on aberrations of the apoptotic pathway to stay alive. Apoptosis targets that are currently being explored for cancer drug discovery include the tumour-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, the BCL2 family of anti-apoptotic proteins, inhibitor of apoptosis (IAP) proteins and MDM2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified representation of the two main signalling pathways of programmed cell death.
Figure 2: Three-dimensional structures of BCL-XL and a two-dimensional structure of a BCL2-family inhibitor.
Figure 3: Anti-tumour activity of ABT-737 observed in vivo in a small cell lung carcinoma xenograft mouse model.
Figure 4: Structures of SMAC mimetics.
Figure 5: MDM2 inhibitors.

Similar content being viewed by others

References

  1. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  4. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    CAS  PubMed  Google Scholar 

  5. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  6. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    CAS  PubMed  Google Scholar 

  7. Baell, J. B. & Huang, D. C. S. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem. Pharmacol. 64, 851–863 (2002).

    CAS  PubMed  Google Scholar 

  8. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    CAS  PubMed  Google Scholar 

  9. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  10. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  11. Chene, P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nature Rev. Cancer 3, 102–109 (2003).

    CAS  Google Scholar 

  12. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer 2, 420–421 (2002).

    CAS  Google Scholar 

  13. Hymowitz, S. G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).

    CAS  PubMed  Google Scholar 

  14. Mongkolsapaya, J. et al. Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotis initiation. Nature Struct. Biol. 6, 1048–1053 (1999).

    CAS  PubMed  Google Scholar 

  15. Cha, S. S. et al. Crystal structure of TRAIL–DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J. Biol. Chem. 275, 31171–31177 (2000).

    CAS  PubMed  Google Scholar 

  16. Kelley, S. K. & Ashkenazi, A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333–339 (2004). A comprehensive review on targeting TRAIL receptors.

    CAS  PubMed  Google Scholar 

  17. Chuntharapai, A. et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166, 4891–4898 (2001).

    CAS  PubMed  Google Scholar 

  18. Ichikawa, K. et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Med. 7, 954–960 (2001).

    CAS  PubMed  Google Scholar 

  19. Takeda, K. et al. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J. Exp. Med. 199, 437–448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Presta, L. G. Engineering antibodies for therapy. Curr. Pharm. Biotechnol. 3, 237–256 (2002).

    CAS  PubMed  Google Scholar 

  21. Shankar, S., Chen, X. & Srivastava, R. K. Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62, 165–186 (2005).

    CAS  PubMed  Google Scholar 

  22. Inoue et al. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ. 11, S193–S206 (2004).

    CAS  PubMed  Google Scholar 

  23. Naka, T. et al. Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients' colon tumors grown in SCID mice. Cancer Res. 62, 5800–5806 (2002).

    CAS  PubMed  Google Scholar 

  24. Pollack, I. F., Erff, M. & Ashkenazi, A. Direct stimulation of apoptotic signaling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin. Cancer Res. 7, 1362–1369 (2001).

    CAS  PubMed  Google Scholar 

  25. Jin, H. et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res. 64, 4900–4905 (2004).

    CAS  PubMed  Google Scholar 

  26. Ray, S. & Almasan, A. Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res. 63, 4713–4723 (2003).

    CAS  PubMed  Google Scholar 

  27. Mitsiades, C. S. et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98, 795–804 (2001).

    CAS  PubMed  Google Scholar 

  28. Chinnaiyan, A. M. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl Acad. Sci USA 97, 1754–1759 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashkenazi, A. et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelley, S. K. et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 299, 31–38 (2001).

    CAS  PubMed  Google Scholar 

  31. LeBlanc, H. N. & Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 10, 66–75 (2003).

    CAS  PubMed  Google Scholar 

  32. Jin, Z., McDonald III, E. R., Dicker, D. T. & El-Deiry, W. S. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J. Biol. Chem. 279, 35829–35839 (2004).

    CAS  PubMed  Google Scholar 

  33. Kazhdan, I. & Marciniak, R. A. Death receptor 4 (DR4) efficiently kills breast cancer cells irrespective of their sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Cancer Gene Ther. 11, 691–698 (2004).

    CAS  PubMed  Google Scholar 

  34. Chawla-Sarkar, M. et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 11, 915–923 (2004).

    CAS  PubMed  Google Scholar 

  35. Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Med. 8, 808–815 (2002).

    CAS  PubMed  Google Scholar 

  36. LeBlanc, H. et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Med. 8, 274–281 (2002).

    CAS  PubMed  Google Scholar 

  37. Deng, Y., Lin, Y. & Wu, X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16, 33–45 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ravi, R. & Bedi, A. Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-xL. Cancer Res. 62, 1583–1587 (2002).

    CAS  PubMed  Google Scholar 

  39. Kelekar, A. & Thompson, C. B. Bcl-2 family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324–330 (1998).

    CAS  PubMed  Google Scholar 

  40. Huang, D. C. & Strasser, A. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    CAS  PubMed  Google Scholar 

  41. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Petros, A. M., Olejniczak, E. T. & Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83–94 (2004).

    CAS  PubMed  Google Scholar 

  43. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997). First structure that defined pro- and anti-apoptotic BCL2 family members interacting with one another.

    CAS  PubMed  Google Scholar 

  44. Petros, A. M. et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 9, 2528–2534 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kirkin, V., Joos, S. & Zornig, M. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta 1644, 229–249 (2004).

    CAS  PubMed  Google Scholar 

  46. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    CAS  PubMed  Google Scholar 

  47. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).

    CAS  PubMed  Google Scholar 

  48. Gaulard, P. et al. Expression of the bcl-2 gene product in follicular lymphoma. Am. J. Pathol. 140, 1089–1095 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ben-Ezra, J. M., Kornstein, M. J., Grimes, M. M. & Krysal, G. Small cell carcinomas of the lung express the Bcl-2 protein. Am. J. Pathol. 145, 1036–1040 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Higashiyama, M., Doi, O., Kodama, K., Yokouchi, H. & Tateishi, R. High prevalence of bcl-2 oncoprotein expression in small cell lung cancer. Anticancer Res. 15, 503–505 (1995).

    CAS  PubMed  Google Scholar 

  51. Schena, M. et al. Growth- and differentiation-associated expression of bcl-2 in B-chronic lymphocytic leukemia cells. Blood 79, 2981–2989 (1992).

    CAS  PubMed  Google Scholar 

  52. Harada, N. et al. Expression of Bcl-2 family of proteins in fresh myeloma cells. Leukemia 12, 1817–1820 (1998).

    CAS  PubMed  Google Scholar 

  53. Leiter, U., Schmid, R. M., Kaskel, P., Peter, R. U. & Krahn, G. Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch. Dermatol. Res. 292, 225–232 (2000).

    CAS  PubMed  Google Scholar 

  54. Matsushima, H. et al. Combined analysis with Bcl-2 and p53 immunostaining predicts poorer prognosis in prostatic carcinoma. J. Urol. 158, 2278–2283 (1997).

    CAS  PubMed  Google Scholar 

  55. Keshgegian, A. A., Johnston, E. & Cnaan, A. Bcl-2 oncoprotein positivity and high MIB-1 (Ki-67) proliferative rate are independent predictive markers for recurrence in prostate carcinoma. Am. J. Clin. Pathol. 110, 443–449 (1998).

    CAS  PubMed  Google Scholar 

  56. Mano, Y. et al. Bcl-2 as a predictor of chemosensitivity and prognosis in primary epithelial ovarian cancer. Eur. J. Cancer 35, 1214–1219 (1999).

    CAS  PubMed  Google Scholar 

  57. Rajkumar, T. et al. Prognostic significance of Bcl-2 and p53 protein expression in stage IIB and IIIB squamous cell carcinoma of the cervix. Eur. J. Gynaecol. Oncol. 19, 556–560 (1998).

    CAS  PubMed  Google Scholar 

  58. Ye, D. et al. Bcl-2/bax expression and p53 gene status in human bladder cancer: relationship to early recurrence with intravesical chemotherapy after resection. J. Urol. 160, 2025–2028 (1998).

    CAS  PubMed  Google Scholar 

  59. Nakata, B. et al. Predictive value of Bcl-2 and Bax protein expression for chemotherapeutic effect in gastric cancer. A pilot study. Oncology 55, 543–547 (1998).

    CAS  PubMed  Google Scholar 

  60. Fries, H. et al. Moderate activation of the apoptosis inhibitor bcl-xL worsens the prognosis in pancreatic cancer. Ann. Surg. 228, 780–787 (1998).

    Google Scholar 

  61. Lipponen, P. et al. Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J. Pathol. 177, 49–55 (1995).

    CAS  PubMed  Google Scholar 

  62. Le, M. G. et al. c-myc, p53 and bcl-2, apoptosis-related genes in infiltrating breast carcinomas: evidence of a link between bcl-2 protein over-expression and a lower risk of metastasis and death in operable patients. Int. J. Cancer 84, 562–567 (1999).

    CAS  PubMed  Google Scholar 

  63. Nakopoulou, L. et al. bcl-2 protein expression is associated with a prognostically favourable phenotype in breast cancer irrespective of p53 immunostaining. Histopathology 34, 310–319 (1999).

    CAS  PubMed  Google Scholar 

  64. Sinicrope, F. A., Hart, J., Michelassi, F. & Lee, J. J. Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin. Cancer Res. 1, 1103–1110 (1995).

    CAS  PubMed  Google Scholar 

  65. Ofner, D. et al. Immunohistochemically detectable bcl-2 expression in colorectal carcinoma: correlation with tumour stage and patient survival. Br. J. Cancer 72, 981–985 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Baretton, G. B. et al. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Aspects of carcinogenesis and prognostic significance. Cancer 77, 255–264 (1996).

    CAS  PubMed  Google Scholar 

  67. Leahy, D. T., Mulcahy, H. E., O'Donoghue, D. P. & Parfrey, N. A. bcl-2 protein expression is associated with better prognosis in colorectal cancer. Histopathology 35, 360–367 (1999).

    CAS  PubMed  Google Scholar 

  68. Ohmori, T. et al. Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-11, ADM) is inhibited by bcl-2. Biochem. Biophys. Res. Commun. 192, 30–36 (1993).

    CAS  PubMed  Google Scholar 

  69. Minn, A. J., Rudin, C. M., Boise, L. H. & Thompson, C. B. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86, 1903–1910 (1995).

    CAS  PubMed  Google Scholar 

  70. Harima, Y. et al. Bax and Bcl-2 expressions predict response to radiotherapy in human cervical cancer. J. Cancer Res. Clin. Oncol. 124, 503–510 (1998).

    CAS  PubMed  Google Scholar 

  71. Mackey, T. J., Borkowski, A., Amin, P., Jacobs, S. C. & Kyprianou, N. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52, 1085–1090 (1998).

    CAS  PubMed  Google Scholar 

  72. Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000). Support for BCL-X L as a cancer target.

    CAS  PubMed  Google Scholar 

  73. Klasa, R. J., Gillum, A. M., Klem, R. E. & Frankel, S. R. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. 12, 193–213 (2002). Summary of the use of BCL2 antisense in anticancer treatment.

    CAS  PubMed  Google Scholar 

  74. Cummings, J., Ward, T. H., Ranson, M. & Dive, C. Apoptosis pathway-targeted drugs — from the bench to the clinic. Biochim. Biophys. Acta 1705, 53–66 (2004).

    CAS  PubMed  Google Scholar 

  75. Gleave, M. E. & Monia, B. P. Antisense therapy for cancer. Nature Rev. Cancer 5, 468–479 (2005).

    CAS  Google Scholar 

  76. Frantz, S. Lessons learnt from Genasense's failure. Nature Rev. Drug Discov. 3, 542–543 (2004).

    CAS  Google Scholar 

  77. Agrawal, S. & Kandimalla, E. R. Antisense and/or immunostimulatory oligonucleotide therapeutics. Curr. Cancer Drug Targets 1, 197–209 (2001).

    CAS  PubMed  Google Scholar 

  78. Zangemeister-Wittke, U. et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-XL expression efficiently induces apoptosis in tumor cells. Clin. Cancer Res. 6, 2547–2555 (2000).

    CAS  PubMed  Google Scholar 

  79. Holinger, E. P., Chittenden, T. & Lutz, R. J. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274, 13298–13304 (1999).

    CAS  PubMed  Google Scholar 

  80. Wang, J. L. et al. Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res. 60, 1498–1505 (2000).

    CAS  PubMed  Google Scholar 

  81. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kutzki, O. et al. Development of a potent Bcl-xL antagonist based on α-helix mimicry. J. Am. Chem. Soc. 124, 11838–11839 (2002).

    CAS  PubMed  Google Scholar 

  83. Tzung, S. P. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biol. 3, 183–191 (2001).

    CAS  PubMed  Google Scholar 

  84. Chan, S. L. et al. Identification of chelerythrine as an inhibitor of BclXL function. J. Biol. Chem. 278, 20453–20456 (2003).

    CAS  PubMed  Google Scholar 

  85. Real, P. J. et al. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res. 64, 7947–7953 (2004).

    CAS  PubMed  Google Scholar 

  86. Wang, J. L. et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl Acad. Sci. USA 97, 7124–7129 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitada, S. et al. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem. 46, 4259–4264 (2003).

    CAS  PubMed  Google Scholar 

  88. Mohammad, R. M. et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(–)-gossypol] against diffuse large cell lymphoma. Mol. Cancer Ther. 4, 13–21 (2005).

    CAS  PubMed  Google Scholar 

  89. Oliver, C. L. et al. (–)-Gossypol acts directly on the mitochondria to overcome Bcl-2 and Bcl-X(L)-mediated apoptosis resistance. Mol. Cancer Ther. 4, 23–31 (2005).

    CAS  PubMed  Google Scholar 

  90. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nature Cell Biol. 3, 173–182 (2001).

    CAS  PubMed  Google Scholar 

  91. Enyedy, I. J. et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 44, 4313–4324 (2001).

    CAS  PubMed  Google Scholar 

  92. Becattini, B. et al. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-xL. Chem. Biol. 11, 389–395 (2004).

    CAS  PubMed  Google Scholar 

  93. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). Discovery of the most potent BCL2-family inhibitor to date.

    CAS  PubMed  Google Scholar 

  94. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).

    CAS  PubMed  Google Scholar 

  95. Takahashi, R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790 (1998).

    CAS  PubMed  Google Scholar 

  96. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    CAS  PubMed  Google Scholar 

  97. Sun, C. et al. NMR structure and mutagenesis of the third bir domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777–33781 (2000).

    CAS  PubMed  Google Scholar 

  98. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527 (2003).

    CAS  PubMed  Google Scholar 

  99. Liu, Z. et al. Structural basis for binding of smac/DIABLO to the XIAP bir3 domain. Nature 408, 1004–1008 (2000). This reference, with reference 100, describes the structure of the SMAC–XIAP-BIR3 complex used in the design of XIAP antagonists.

    CAS  PubMed  Google Scholar 

  100. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    CAS  PubMed  Google Scholar 

  101. LaCasse, E. C., Baird, S., Korneluk, R. G. & MacKenzie, A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259 (1998).

    PubMed  Google Scholar 

  102. Hu, Y. et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer c in vitro and in vivo. Clin. Cancer Res. 9, 2826–2836 (2003).

    CAS  PubMed  Google Scholar 

  103. Arnt, C. R., Chiorean, M. V., Heldebrant, M. P. Gores, G. J. & Kaufmann, S. H. Synthetic smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J. Biol. Chem. 277, 44236–44243 (2002).

    CAS  PubMed  Google Scholar 

  104. Yang, L. et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated smac peptide. Cancer Res. 63, 831–837 (2003).

    CAS  PubMed  Google Scholar 

  105. Sun, H. et al. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J. Med. Chem. 47, 4147–4150 (2004).

    CAS  PubMed  Google Scholar 

  106. Sun, H. et al. Structure-based design of potent, conformationally constrained Smac mimetics. J. Am. Chem. Soc. 126, 16686–16687 (2004).

    CAS  PubMed  Google Scholar 

  107. Sun, H. et al. Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. Bioorg. Med. Chem. Lett. 15, 793–797 (2005).

    CAS  PubMed  Google Scholar 

  108. Oost, T. et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J. Med. Chem. 47, 4417–4426 (2004).

    CAS  PubMed  Google Scholar 

  109. Wu, T. Y. H., Wagner, K. W., Bursulaya, B., Schultz, P. G. & Deveraux, Q. L. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem. Biol. 10, 759–767 (2003).

    CAS  PubMed  Google Scholar 

  110. Nikolovska-Coleska, Z. et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J. Med. Chem. 47, 2430–2440 (2004).

    CAS  PubMed  Google Scholar 

  111. Li, L. et al. A small molecule smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305, 1471–1474 (2004).

    CAS  PubMed  Google Scholar 

  112. Park, C. et al. Non-peptidic small molecule inhibitors of XIAP. Bioorg. Med. Chem. Lett. 15, 771–775 (2005).

    CAS  PubMed  Google Scholar 

  113. Schimmer, A. D. et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5, 25–35 (2004).

    CAS  PubMed  Google Scholar 

  114. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997). The first report of survivin.

    CAS  PubMed  Google Scholar 

  115. Altieri, D. C. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22, 8581–8589 (2003).

    CAS  PubMed  Google Scholar 

  116. Olie, R. A. et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 60, 2805–2809 (2000).

    CAS  PubMed  Google Scholar 

  117. Grossman, D., Kim, P. J., Schechner, J. S. & Altieri, D. C. Inhibition of melanoma tumor growth in vivo by survivin target. Proc. Natl Acad. Sci. USA 98, 635–640 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Momand, J., Wu, H. H. & Dasgupta, G. MDM2 — master regulator of the p53 tumor suppressor protein. Gene 242, 15–29 (2000).

    CAS  PubMed  Google Scholar 

  119. Lane, D. P. & Lain, S. Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8 (Suppl.), S38–S42 (2002).

    CAS  PubMed  Google Scholar 

  120. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996). Structure of the p53–MDM2 complex used in the design of MDM2 inhibitors.

    CAS  PubMed  Google Scholar 

  121. Bottger, A. et al. Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 269, 744–756 (1997).

    CAS  PubMed  Google Scholar 

  122. Stoll, R. et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 2, 336–344 (2001).

    Google Scholar 

  123. Zhao, J. et al. The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. Cancer Lett. 183, 69–77 (2002).

    CAS  PubMed  Google Scholar 

  124. Duncan, S. J. et al. Isolation and structure elucidation of chlorofusin, a novel p53–MDM2 antagonist from a Fusarium sp. J. Med. Chem. Soc. 123, 554–560 (2001).

    CAS  Google Scholar 

  125. Galatin, P. S. & Abraham, D. J. A nonpeptidic sulfonamide inhibits the p53–mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J. Med. Chem. 47, 4163–4165 (2004).

    CAS  PubMed  Google Scholar 

  126. Parks D. J. et al. 1,4–Benzodiazepine–2,5-diones as small molecule antagonists of the HDM2–p53 interaction: discovery and SAR. Bioorg. Med. Chem. Lett. 15, 765–770 (2005).

    CAS  PubMed  Google Scholar 

  127. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). Discovery of the most potent MDM2 inhibitor to date.

    CAS  PubMed  Google Scholar 

  128. Workman, P. Inhibiting the phosphoinositide 3-kinase pathway for cancer treatment. Biochem. Soc. Trans. 32, 393–396 (2004).

    CAS  PubMed  Google Scholar 

  129. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  130. del Paso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Google Scholar 

  131. Blume-Jensen, P., Janknecht, R. & Hunter, T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr. Biol. 8, 779–782 (1998).

    CAS  PubMed  Google Scholar 

  132. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase Mol. Cell. Biol. 21, 893–901 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  134. Kops, G. J. & Burgering, B. M. Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J. Mol. Med. 77, 656–665 (1999).

    CAS  PubMed  Google Scholar 

  135. Kops, G. J. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  136. Gelfanov, V. M. et al. Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL: cooperation of akt with raf/erk leads to p65 nuclear factor κB-mediated antiapoptosis involving c-IAP2. Blood 98, 2508–2517 (2001).

    CAS  PubMed  Google Scholar 

  137. Trencia, A. et al. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell. Biol. 23, 4511–4521 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mitsiades, C. S., Mitsiades, N. & Koutsilieris, M. The akt pathway: molecular targets for anti-cancer drug development. Curr. Cancer Drug Targets 4, 235–256 (2004).

    CAS  PubMed  Google Scholar 

  139. Lu, Y., Wang, H. & Mills, G. B. Targeting PI3K–akt pathway for cancer therapy. Rev. Clin. Exp. Hematol. 7, 205–228 (2003).

    CAS  PubMed  Google Scholar 

  140. Luo, Y. et al. Potent and selective inhibitors of akt kinases slow the progression of tumors in vivo. Mol. Cancer Therap. 4, 977–986 (2005).

    CAS  Google Scholar 

  141. Rowinsky, E. K. Targeting the molecular target of rapamycin (mTOR). Curr. Opin. Oncol. 16, 564–575 (2004).

    CAS  PubMed  Google Scholar 

  142. Adams, J. The proteasome: a suitable antineoplastic target. Nature Rev. Cancer 4, 349–360 (2004).

    CAS  Google Scholar 

  143. Fribley, A., Zeng, Q. & Wang, C. Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinomous cells. Mol. Cell. Biol. 24, 9696–9704 (2004).

    Google Scholar 

  144. Burke, J. R. Targeting I kappa B kinase for the treatment of inflammatory and other disorders. Curr. Opin. Drug Discov. Devel. 6, 720–728 (2003).

    CAS  PubMed  Google Scholar 

  145. Chen, G. -Q. et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood 88, 1052–1061 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank A. Petros and E. Olejniczak for help in preparing the figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Stephen Fesik is an employee of Abbott Laboratories.

Related links

Related links

DATABASES

Entrez Gene

APAF1

AKT

BAD

BAK

BAX

BCL2

BID

caspase 3

caspase 7

caspase 8

caspase 9

DR4

DR5

MDM2

p53

SMAC

survivin

TRAIL

XIAP

National Cancer Institute

leukaemias

melanoma

multiple myeloma

small cell lung carcinomas

Glossary

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY

Immune cells interact with the Fc region of antibodies that are bound to a target cell through Fc receptors on their surface to mediate cell killing.

COMPLEMENT-DEPENDENT CYTOTOXICITY

Antibodies can kill target cells by binding the various components of complement. When combined, the components form pores in the cell membrane, which leads to phagocytosis or lysis.

ANTENNAPEDIA HOMEOPROTEIN

Cationic peptides derived from this protein can be attached to molecules to allow their transport into cells.

α, αDI-SUBSTITUTED UNNATURAL AMINO-ACIDS

Amino-acids with two additional chemical groups attached to the α-position.

TERPHENYL SCAFFOLD

A synthetic framework containing three phenyl rings that can be used to stabilize α-helical proteins and disrupt protein–protein interactions.

HETEROCYCLES

Ring compounds with both carbon atoms and atoms of other elements in the ring.

CHALCONE DERIVATIVES

1,3-diphenyl-2-propen-1-one analogues that are derived from ketones and are important intermediates in the synthesis of flavonoids. They are used to treat several diseases, including cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesik, S. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5, 876–885 (2005). https://doi.org/10.1038/nrc1736

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing