Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosing and exploiting cancer's addiction to blocks in apoptosis

Key Points

  • Cancer cells exhibit many phenotypes, such as genomic instability or oncogene activation, that ought to induce apoptosis, but they nonetheless survive. A block in apoptosis is a likely requirement for cancer maintenance.

  • In cancer cells that overexpress BCL2 the protein itself is often largely bound to pro-apoptotic BH3-only proteins like BIM. In such circumstances we describe BCL2 and the cell as being 'primed'.

  • BH3 profiling is a novel tool that exploits selective interaction between BH3 domains and anti-apoptotic BCL2 proteins to reveal the different ways cancer cells escape apoptosis. Certain cancer cells escape apoptosis by expression of BCL2; BH3 profiling can specifically identify these primed, BCL2-dependent cells.

  • BCL2 expression does not necessarily confer a chemoresistant phenotype to cancer cells when selected for in previously untreated cells. If the expressed BCL2 is primed, sequestering large amounts of pro-apoptotic proteins such as BIM, it may actually relate to increased chemosensitivity.

  • Primed cells are selectively sensitive to antagonists of anti-apoptotic BCL2 proteins like ABT-737. Primed cells might also be selectively more sensitive to conventional chemotherapy agents compared with cancer cells that use a different apoptotic block.

  • It has long been suspected that cancer cells are more susceptible to cell death than normal cells. That some cancer cells appear to be primed for death in comparison with normal cells offers a possible biochemical explanation for this clinical observation.

  • Small-molecule drugs that target BCL2 and related anti-apoptotic proteins are currently in early-phase clinical trials.

Abstract

Cancer cells survive despite violating rules of normal cellular behaviour that ordinarily provoke apoptosis. The blocks in apoptosis that keep cancer cells alive are therefore attractive candidates for targeted therapies. Recent studies have significantly increased our understanding of how interactions among proteins in the BCL2 family determine cell survival or death. It is now possible to systematically determine how individual cancers escape apoptosis. Such a determination can help predict not only whether cells are likely to be killed by antagonism of BCL2, but also whether they are likely to be sensitive to chemotherapy that kills by the intrinsic apoptotic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How apoptosis kills and clears cells.
Figure 2: Summary figure of the structures of BCL2 family proteins by group.
Figure 3: A model of BCL2 family control over mitochondrial apoptosis.
Figure 4: Three classes of apoptotic blocks used to maintain cancer survival.
Figure 5: Why primed cancer cells may be selectively sensitive to BCL2 antagonists and conventional chemotherapy.

Similar content being viewed by others

References

  1. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  6. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Cleary, M. L. & Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl Acad. Sci. USA 82, 7439–7443 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bakhshi, A. et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899–906 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. McDonnell, T. J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349, 254–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993). In this report, pro- and anti-death proteins transcribed by the bcl-x locus were first described.

    Article  CAS  PubMed  Google Scholar 

  13. Gibson, L. et al. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13, 665–675 (1996).

    CAS  PubMed  Google Scholar 

  14. Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P. & Craig, R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl Acad. Sci. USA 90, 3516–3520 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, S. S. et al. A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 11, 1693–1698 (1995).

    CAS  PubMed  Google Scholar 

  16. Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993). This seminal initial report showed that BAX is a pro-death protein related to BCL2 that exerts a pro-death function. Along with reference 12, this paper clearly indicated that BCL2 was only the first member of what turned out to be a large family of related proteins that control apoptosis.

    Article  CAS  PubMed  Google Scholar 

  17. Chittenden, T. et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14, 5589–5596 (1995). This paper first identified the importance of the BH3 domain in facilitating the heterodimeric interactions that are crucial to BCL2 family function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu, S. Y., Kaipia, A., McGee, E., Lomeli, M. & Hsueh, A. J. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl Acad. Sci. USA 94, 12401–12406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, D. C. & Strasser, A. BH3-only proteins — essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes Dev. 10, 2859–2869 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Boyd, J. M. et al. Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 11, 1921–1928 (1995).

    CAS  PubMed  Google Scholar 

  22. Leber, B., Lin, J. & Andrews, D. W. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12, 897–911 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Puthalakath, H. & Strasser, A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9, 505–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL . Cell 87, 619–628 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cartron, P. F. et al. The first α helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol. Cell 16, 807–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006). The concept of priming of BCL2 proteins and mitochondria with pro-death proteins is demonstrated. BH3 profiling is presented and validated in several test systems.

    Article  CAS  PubMed  Google Scholar 

  31. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005). This report uses a completely defined system of liposomes, recombinant proteins, and synthetic liposomes to demonstrate that BAX requires activation by BH3 domains to exert its permeabilizing function.

    Article  CAS  PubMed  Google Scholar 

  33. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002). This paper first presents the activator versus sensitizer dichotomy in the function of BH3 domains. Certain BH3 domains are shown to act as antagonists of BCL2 function.

    Article  CAS  PubMed  Google Scholar 

  35. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biol. 8, 1348–1358 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Yee, K. S. & Vousden, K. H. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 30 Oct 2007 (doi: 10.1007/s10495-007-0140-2).

  39. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Moll, U. M., Wolff, S., Speidel, D. & Deppert, W. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. & George, D. L. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nature Cell Biol. 6, 443–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Pagliari, L. J. et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc. Natl Acad. Sci. USA 102, 17975–17980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu, Y. T. & Youle, R. J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Wolter, K. G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281–1292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng, X., Gao, F., Flagg, T., Anderson, J. & May, W. S. Bcl2's flexible loop domain regulates p53 binding and survival. Mol. Cell Biol. 26, 4421–4434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, H., Hou, Q., Chai, Y. & Hsu, Y. T. Distinct domains of Bcl-XL are involved in Bax and Bad antagonism and in apoptosis inhibition. Exp. Cell Res. 309, 316–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sundararajan, R., Cuconati, A., Nelson, D. & White, E. Tumor necrosis factor-α induces Bax–Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J. Biol. Chem. 276, 45120–45127 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Mikhailov, V. et al. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J. Biol. Chem. 278, 5367–5376 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2-interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Marani, M., Tenev, T., Hancock, D., Downward, J. & Lemoine, N. R. Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol. Cell Biol. 22, 3577–3589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000). This paper presents the important finding that a BH3-only protein interacts with a multidomain pro-apoptotic protein to induce apoptosis. These findings demonstrate the importance of activation and oligomerization in BAK function.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pavlov, E. V. et al. A novel, high-conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol. 155, 725–731 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dejean, L. M. et al. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol. Biol. Cell 16, 2424–2432 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Cheng, E. H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001). This paper develops the important concept, first presented in reference 60, that a key way that antiapoptotic proteins such as BCL-2 oppose death is to sequester BH3-only proteins.

    Article  CAS  PubMed  Google Scholar 

  59. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng, E. H., Levine, B., Boise, L. H., Thompson, C. B. & Hardwick, J. M. Bax-independent inhibition of apoptosis by Bcl-XL . Nature 379, 554–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Kelekar, A., Chang, B. S., Harlan, J. E., Fesik, S. W. & Thompson, C. B. Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL . Mol. Cell Biol. 17, 7040–7046 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Sattler, M. et al. Structure of Bcl-XL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005). Here selective interactions among BH3-only and anti-apoptotic proteins are characterized.

    Article  CAS  PubMed  Google Scholar 

  66. Uren, R. T. et al. Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. J. Cell Biol. 177, 277–287 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-XL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007). This report is a presentation of the mature indirect model of apoptosis induction.

    Article  CAS  PubMed  Google Scholar 

  69. Harada, H., Quearry, B., Ruiz-Vela, A. & Korsmeyer, S. J. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc. Natl Acad. Sci. USA 101, 15313–15317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Walensky, L. D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    CAS  Google Scholar 

  71. Green, D. R. At the gates of death. Cancer Cell 9, 328–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jansen, B. et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. O'Brien, S. et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 25, 1114–1120 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Konopleva, M. et al. Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 95, 3929–3938 (2000).

    CAS  PubMed  Google Scholar 

  77. Gekeler, V. et al. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides 16, 83–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Castro, J. E. et al. Thymidine-phosphorothioate oligonucleotides induce activation and apoptosis of CLL cells independently of CpG motifs or BCL-2 gene interference. Leukemia 20, 680–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, S., Dai, Y., Harada, H., Dent, P. & Grant, S. Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 67, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). This paper introduces ABT-737, a high affinity small-molecule antagonist of BCL2, BCL-X L and BCL-w.

    Article  CAS  PubMed  Google Scholar 

  83. Tahir, S. K. et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res. 67, 1176–1183 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Del Gaizo Moore, V., Schlis, K., Sallan, S., Armstrong, S. & Letai, A. BCL-2 dependence and ABT-737 sensitivity in acute lymphblastic leukemia. Blood 4 Dec 2007 (doi 10.1182/blood-2007-06-098012).

  86. Zhai, D., Jin, C., Satterthwait, A. C. & Reed, J. C. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ. 13, 1419–1421 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Gasparini, G. et al. Expression of bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer. Clin. Cancer Res. 1, 189–198 (1995).

    CAS  PubMed  Google Scholar 

  89. Lee, K. H. et al. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer 7, 63 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sjostrom, J. et al. The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. Clin. Cancer Res. 8, 811–816 (2002).

    CAS  PubMed  Google Scholar 

  91. Yang, Q. et al. Prognostic value of Bcl-2 in invasive breast cancer receiving chemotherapy and endocrine therapy. Oncol. Rep. 10, 121–125 (2003).

    CAS  PubMed  Google Scholar 

  92. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to those many authors whose important work could not be included in this review owing to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Anthony G. Letai has received consulting fees from Abbott Laboratories. He is a co-founder of Eutropics Pharmaceuticals.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

leukaemia

melanoma

pancreatic cancer

National Cancer Institute Drug Dictionary

cyclophosphamide

doxorubicin

etoposide

fludarabine

oblimersen

vincristine

FURTHER INFORMATION

Anthony G. Letai's homepage

Glossary

Extrinsic apoptotic pathway

The apoptotic pathway initiated by ligation of the tumour necrosis factor family of receptors. Following ligation, a death-inducing signalling complex is constructed, which induces activation of the initiator caspase 8, which in turn activates effector caspases such as caspase 3. This pathway can connect with the intrinsic pathway through caspase 8 cleavage and activation of the pro-death BCL2 family protein BID.

Intrinsic or mitochondrial pathway

The apoptotic pathway controlled by the BCL2 family that results in mitochondrial permeabilization by activated BAX and BAK. Multiple pro-apoptotic factors are released from the permeabilized mitochondria, including cytochrome c and SMAC, which induce caspase activation.

Necrosis

A type of cell death distinct from apoptosis, characterized by breakdown in the plasma membrane and release of intracellular contents. Though previously thought to be a passive process, it might also be regulated by a genetically encoded programme.

Mitotic catastrophe

A death resulting from failure of a cell to arrest before mitosis following DNA damage, resulting in severe aberrancies in chromosomal structure and segregation. It might share downstream events with apoptosis.

Autophagy

Literally, a cellular response in which the cell metabolizes its own contents and organelles to maintain energy production. Although such a process can eventually result in cell death, it can also be used to maintain cell survival under conditions of limiting nutrients.

Initiator caspases

That subset of the caspase family, including caspases 8 and 9, that are activated early in apoptotic signalling. Their cleavage targets are restricted, and include the effector caspases.

Effector caspases

That subset of the caspase family, including caspases 3 and 7, that are activated by initiator caspases in apoptotic signalling. Their cleavage targets are broadly distributed throughout the cell; activation of effector caspases is generally a terminal event for a cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letai, A. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 8, 121–132 (2008). https://doi.org/10.1038/nrc2297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing