Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemokines: Integrators of Pain and Inflammation

Key Points

  • Neuropathic pain syndromes refer to long-lasting 'pathological' states of increased pain intensity (hyperalgesia) or sensitivity (allodynia). These syndromes often result from damage to peripheral nerves, infection or the toxic effects of drugs.

  • Neuropathic pain states are characterized by increased excitability of sensory nociceptive (pain sensing) nerves, changes in the phenotypes of sensory nerves and enhanced synaptic transmission in the spinal cord. However, the cellular and molecular changes that result in these effects are not known. Here, we discuss the possibility that neuroinflammatory responses accompanying neuropathic pain increase the synthesis of molecules that result in pain hypersensitivity.

  • Chemokines (chemotactic cytokines) are small secreted proteins that produce their effects by stimulating G-protein-coupled receptors. There are four families of chemokines and four families of chemokine receptors. Some chemokine receptors, for example, CCR5 and CXCR4, have been shown to be the cellular receptors responsible for HIV-1 infection of target cells. Chemokines have been widely studied owing to their important role in regulating the trafficking of leukocytes under normal conditions and to sites of inflammation. Therefore, chemokines are considered to be major orchestrators of the inflammatory response.

  • Recent work has demonstrated that chemokines and their receptors are also expressed in the nervous system. Chemokines have various effects in the nervous system, ranging from the trafficking of stem cells during embryological development to effects on neuronal excitability and synaptic transmission. In particular, sensory nociceptive neurons express various chemokine receptors. Activation of these receptors by chemokines produces excitation of nociceptors through the transactivation of the TRPV1 (transient receptor potential vanilloid 1) capsaicin receptor, resulting in Na+ influx and neuronal depolarization. Intradermal application of several chemokines produces a strong pain response.

  • In some models of neuropathic pain, the chemokine (CC motif) receptor 2 (CCR2) and its major ligand the chemokine monocyte chemotactic protein-1 (MCP1; also known as CCL2) are upregulated by nociceptive neurons. In association with this, nociceptive neurons in neuropathic pain models are strongly excited by application of MCP1. CCR2-knockout mice show greatly reduced neuropathic pain responses. Therefore, it is possible that direct MCP1 excitation of nociceptive neurons is an important factor in the production of neuropathic pain responses.

  • Drugs that block chemokine receptors, such as CCR2, might constitute a novel class of therapeutic agents for the treatment of painful sensory neuropathies.

Abstract

Chronic (neuropathic) pain is one of the most widespread and intractable of human complaints, as well as being one of the most difficult syndromes to treat successfully with drugs or surgery. The development of new therapeutic approaches to the treatment of painful neuropathies requires a better understanding of the mechanisms that underlie the development of these chronic pain syndromes. It is clear that inflammatory responses often accompany the development of neuropathic pain, and here we discuss the idea that chemokines might be key to integrating the development of pain and inflammation and could furnish new leads in the search for effective analgesic agents for the treatment of painful neuropathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of peripheral nervous sytem.
Figure 2: Chemokine receptors expressed by cultured rat neonatal dorsal rat ganglia (DRG) neurons.
Figure 3: CCR2 mRNA expression in compressed and adjacent, non-compressed dorsal root ganglia (DRG).
Figure 4: Possible chemokine receptor function in the context of HIV-1 neuropathy.
Figure 5: Possible chemokine-mediated signal transduction in dorsal root ganglia neurons in association with neuropathic pain.

Similar content being viewed by others

References

  1. Woolf, C. J. & Mannion, R. J. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, W., Day, B. J. & Copeland, W. C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Rev. Drug Discov. 2, 812–822 (2003).

    Article  CAS  Google Scholar 

  3. Gonzalez-Scarano, F. & Martin-Garcia, J. The neuropathogenesis of AIDS. Nature Rev. Immunol. 5, 69–81 (2005).

    Article  CAS  Google Scholar 

  4. Martin, T. J. & Eisenach, J. C. Pharmacology of opioid and nonopioid analgesics in chronic pain states. J. Pharmacol. Exp. Ther. 299, 811–817 (2001).

    CAS  PubMed  Google Scholar 

  5. Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Frampton, J. E. & Scott, L. J. Pregabalin: in the treatment of painful diabetic peripheral neuropathy. Drugs 64, 2813–2820 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. McClelland, D., Evans, R. M., Barkworth, L., Martin, D. J. & Scott, R. H. A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats. BMC Pharmacol. 4, 14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanai, A., Sarantopoulos, C., McCallum, J. B. & Hogan, Q. Painful neuropathy alters the effect of gabapentin on sensory neuron excitability in rats. Acta Anaesthesiol. Scand. 48, 507–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Passmore, G. M. et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J. Neurosci. 23, 7227–7236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo, Z. D. et al. Injury type-specific calcium channel a 2 d-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J. Pharmacol. Exp. Ther. 303, 1199–1205 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bayer, K., Ahmadi, S. & Zeilhofer, H. U. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 46, 743–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, C. et al. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J. Neurophysiol. 89, 1588–1602 (2003).

    Article  PubMed  Google Scholar 

  13. Wu, G. et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J. Neurosci. 21, RC140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, G. et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci. 22, 7746–7753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sukhotinsky, I., Ben-Dor, E., Raber, P. & Devor, M. Key role of the dorsal root ganglion in neuropathic tactile hypersensibility. Eur. J. Pain 8, 135–143 (2004).

    Article  PubMed  Google Scholar 

  16. Obata, K. et al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101, 65–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Donovan-Rodriguez, T., Dickenson, A. H. & Urch, C. E. Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain. Anesthesiology 102, 132–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Shimoyama, M., Shimoyama, N. & Hori, Y. Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal horn. Pain 85, 405–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Moore, K. A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sluka, K. A. Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J. Pharmacol. Exp. Ther. 287, 232–237 (1998).

    CAS  PubMed  Google Scholar 

  21. Lewis, R. J. et al. Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J. Biol. Chem. 275, 35335–35344 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, M. T., Cabot, P. J., Ross, F. B., Robertson, A. D. & Lewis, R. J. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96, 119–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Watkins, L. R. & Maier, S. F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002). Excellent review linking the failure of drugs to control neuropathic pain to our ignorance of neuroimmune interactions.

    Article  CAS  PubMed  Google Scholar 

  24. Holzer, P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 30, 5–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ransohoff, R. M. The chemokine system in neuroinflammation: an update. J. Infect. Dis. 186 (Suppl. 2), S152–S156 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Carroll, S. L. & Frohnert, P. W. Expression of JE (monocyte chemoattractant protein-1) is induced by sciatic axotomy in wild type rodents but not in C57BL/Wld(s) mice. J. Neuropathol. Exp. Neurol. 57, 915–930 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Rutkowski, J. L. et al. Signals for proinflammatory cytokine secretion by human Schwann cells. J. Neuroimmunol. 101, 47–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Siebert, H., Sachse, A., Kuziel, W. A., Maeda, N. & Bruck, W. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. J. Neuroimmunol. 110, 177–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Perrin, F. E., Lacroix, S., Aviles-Trigueros, M. & David, S. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1b in Wallerian degeneration. Brain 128, 854–866 (2005).

    Article  PubMed  Google Scholar 

  30. Meller, S. T., Dykstra, C., Grzybycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. DeLeo, J. A. & Yezierski, R. P. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Cunha, F. Q., Poole, S., Lorenzetti, B. B. & Ferreira, S. H. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br. J. Pharmacol. 107, 660–664 (1992). Established that proinflammatory cytokines have an early and crucial role in the development of inflammatory hyperalgesia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Safieh-Garabedian, B., Poole, S., Allchorne, A., Winter, J. & Woolf, C. J. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J. Pharmacol. 115, 1265–1275 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohtori, S., Takahashi, K., Moriya, H. & Myers, R. R. TNF-α and TNF-α receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 29, 1082–1088 (2004).

    Article  PubMed  Google Scholar 

  35. Holmes, G. M., Hebert, S. L., Rogers, R. C. & Hermann, G. E. Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res. 1025, 210–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Shubayev, V. I. & Myers, R. R. Upregulation and interaction of TNFα and gelatinases A and B in painful peripheral nerve injury. Brain Res. 855, 83–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Schafers, M., Geis, C., Svensson, C. I., Luo, Z. D. & Sommer, C. Selective increase of tumour necrosis factor-α in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur. J. Neurosci. 17, 791–804 (2003).

    Article  PubMed  Google Scholar 

  38. Sommer, C. Painful neuropathies. Curr. Opin. Neurol. 16, 623–628 (2004).

    Article  Google Scholar 

  39. Schafers, M., Lee, D. H., Brors, D., Yaksh, T. L. & Sorkin, L. S. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-α after spinal nerve ligation. J. Neurosci. 23, 3028–3038 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schafers, M., Svensson, C. I., Sommer, C. & Sorkin, L. S. Tumor necrosis factor-α induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci. 23, 2517–2521 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, B., Li, H., Brull, S. J. & Zhang, J. -M. Increased sensitivity of sensory neurons to tumor necrosis factor a in rats with chronic compression of the lumbar ganglia. J. Neurophysiol. 88, 1393–1399 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Subang, M. C. & Richardson, P. M. Influence of injury and cytokines on synthesis of monocyte chemoattractant protein-1 mRNA in peripheral nervous tissue. Eur. J. Neurosci. 13, 521–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka, T., Minami, M., Nakagawa, T. & Satoh, M. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci. Res. 48, 463–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. White, F. A. et al. MCP-1/CCR2 signaling is upregulated in a subset of sensory neurons subjected to chronic compression injury. Proc. Natl Acad. Sci. USA (in the press).

  45. Lindenlaub, T., Teuteberg, P., Hartung, T. & Sommer, C. Effects of neutralizing antibodies to TNF-α on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res. 866, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Sommer, C. et al. Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res. 913, 86–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Abbadie, C. et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl Acad. Sci. USA 100, 7947–7952 (2003). Showed that genetic deletion of CCR2 diminishes injury-induced neuropathic pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh, S. B., Endoh, T., Simen, A. A., Ren, D. & Miller, R. J. Regulation of calcium currents by chemokines and their receptors. J. Neuroimmunol. 123, 66–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Oh, S. B. et al. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci. 21, 5027–5035 (2001). The first paper describing the expression of diverse chemokine receptors by DRG neurons and their potential role in the generation of pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin, X., Wan, Y. & Wang, X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res. 26 July 2005 (10.1002/jnr.20612).

  52. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Tran, P. B. & Miller, R. J. Chemokine receptors: signposts to brain development and disease. Nature Rev. Neurosci. 4, 444–455 (2003).

    Article  CAS  Google Scholar 

  54. Rot, A. & von Andrian, U. H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Cartier, L., Hartley, O., Dubois-Dauphin, M. & Krause, K. H. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Brain Res. Rev. 48, 16–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998). Noteworthy as the first report of a role for a chemokine receptor in neuronal cell migration and development of the CNS.

    Article  CAS  PubMed  Google Scholar 

  57. Lu, M., Grove, E. A. & Miller, R. J. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc. Natl Acad. Sci. USA 99, 7090–7095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stumm, R. K. et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J. Neurosci. 22, 5865–5878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Banisadr, G., Skrzydelski, D., Kitabgi, P., Rostene, W. & Parsadaniantz, S. M. Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur. J. Neurosci. 18, 1593–1606 (2003).

    Article  PubMed  Google Scholar 

  60. Banisadr, G. et al. Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur. J. Neurosci. 16, 1661–1671 (2002).

    Article  PubMed  Google Scholar 

  61. Banisadr, G. et al. Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J. Neurochem. 81, 257–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Cowell, R. M. & Silverstein, F. S. Developmental changes in the expression of chemokine receptor CCR1 in the rat cerebellum. J. Comp. Neurol. 457, 7–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Tissir, F., Wang, C. E. & Goffinet, A. M. Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development. Brain Res. Dev. Brain Res. 149, 63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ragozzino, D. CXC chemokine receptors in the central nervous system: role in cerebellar neuromodulation and development. J. Neurovirol. 8, 559–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Nelson, T. E. & Gruol, D. L. The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. J. Neuroimmunol. 156, 74–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Puma, C., Danik, M., Quirion, R., Ramon, F. & Williams, S. The chemokine interleukin-8 acutely reduces Ca2+ currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J. Neurochem. 78, 960–971 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, N. et al. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc. Natl Acad. Sci. USA 102, 4536–4541 (2005). Showed that a chemokine acting on its cognate chemokine receptor can cross-sensitize TRPV1 and contribute to hyperalgesia during inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004). Provides evidence that the presence of chemokine receptors on spinal microglia is associated with nociceptive transmission and potentially neuropathic pain mechanisms.

    Article  PubMed  Google Scholar 

  69. Bolin, L. M. et al. Primary sensory neurons migrate in response to the chemokine RANTES. J. Neuroimmunol. 81, 49–57 (1998). Suggests that the presence of the chemokine RANTES is essential for neuronal migration and differentiation of nociceptive neurons in the DRG.

    Article  CAS  PubMed  Google Scholar 

  70. Homma, Y., Brull, S. J. & Zhang, J. M. A comparison of chronic pain behavior following local application of tumor necrosis factor a to the normal and mechanically compressed lumbar ganglia in the rat. Pain 95, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Song, X. J., Hu, S. J., Greenquist, K. W., Zhang, J. M. & LaMotte, R. H. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J. Neurophysiol. 82, 3347–3358 (1999). Showed that chronic compression of the ganglia produces enhanced excitability in the DRG.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, J. M., Song, X. J. & LaMotte, R. H. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J. Neurophysiol. 82, 3359–3366 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Hu, S. -J., Song, X. -J., Greenquist, K. W., Zhang, J. -M. & LaMotte, R. H. Protein kinase A modulates spontaneous activity in chronically compressed dorsal root ganglion neurons in the rat. Pain 94, 39–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Tofaris, G. K., Patterson, P. H., Jessen, K. R. & Mirsky, R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci. 22, 6696–6703 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glabinski, A. R. et al. TNF-α microinjection upregulates chemokines and chemokine receptors in the central nervous system without inducing leukocyte infiltration. J. Interferon Cytokine Res. 23, 457–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Belmadani, A. et al. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J. Neurosci. 25, 3995–4003 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fujioka, T., Purev, E. & Rostami, A. Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. J. Neuroimmunol. 97, 51–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Sorensen, T. L. et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103, 807–815 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20, 2294–2302 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Lindia, J. A., McGowan, E., Jochnowitz, N. & Abbadie, C. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J. Pain 6, 434–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Garton, K. J. et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001 (2001).

    CAS  PubMed  Google Scholar 

  82. Tsou, C. L., Haskell, C. A. & Charo, I. F. Tumor necrosis factor-a-converting enzyme mediates the inducible cleavage of fractalkine. J. Biol. Chem. 276, 44622–44626 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Ludwig, A., Berkhout, T., Moores, K., Groot, P. & Chapman, G. Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-α and is modulated by metalloproteinase activity. J. Immunol. 168, 604–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Johnston, I. N. et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci. 24, 7353–7365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marzocchetti, A. et al. Macrophage chemoattractant protein-1 levels in cerebrospinal fluid correlate with containment of JC virus and prognosis of acquired immunodeficiency syndrome-associated progressive multifocal leukoencephalopathy. J. Neurovirol. 11, 219–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Avison, M. J. et al. Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia. J. Neurovirol. 10, 223–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Sodhi, A., Montaner, S. & Gutkind, J. S. Viral hijacking of G-protein-coupled-receptor signalling networks. Nature Rev. Mol. Cell Biol. 5, 998–1012 (2004).

    Article  CAS  Google Scholar 

  88. Zhu, Y. et al. Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase. J. Immunol. 175, 1118–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Keswani, S. C. et al. Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann. Neurol. 54, 287–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Milligan, E. D. et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res. 861, 105–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hall, C. D. et al. Peripheral neuropathy in a cohort of human immunodeficiency virus-infected patients. Incidence and relationship to other nervous system dysfunction. Arch. Neurol. 48, 1273–1274 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Bacellar, H. et al. Temporal trends in the incidence of HIV-1-related neurologic diseases: multicenter AIDS cohort study, 1985–1992. Neurology 44, 1892–1900 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Snider, W. D. et al. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann. Neurol. 14, 403–418 (1983). First observation of painful peripheral neuropathies in HIV-positive individuals.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, B. J., Koszinowski, U. H., Sarawar, S. R. & Adler, H. A g-herpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J. Immunol. 170, 243–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Bodner, A. et al. Mixed lineage kinase 3 mediates gp120IIIB-induced neurotoxicity. J. Neurochem. 82, 1424–1434 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Ho, D. D. et al. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N. Engl. J. Med. 313, 1493–1497 (1985).

    Article  CAS  PubMed  Google Scholar 

  97. Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. An, S. F., Groves, M., Gray, F. & Scaravilli, F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J. Neuropathol. Exp. Neurol. 58, 1156–1162 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Keswani, S. C. et al. FK506 is neuroprotective in a model of antiretroviral toxic neuropathy. Ann. Neurol. 53, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Cherry, C. L., McArthur, J. C., Hoy, J. F. & Wesselingh, S. L. Nucleoside analogues and neuropathy in the era of HAART. J. Clin. Virol. 26, 195–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Dalakas, M. C. Peripheral neuropathy and antiretroviral drugs. J. Peripher. Nerv. Syst. 6, 14–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Kakuda, T. N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22, 685–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Keilbaugh, S. A., Hobbs, G. A. & Simpson, M. V. Effect of 2′,3′-dideoxycytidine on oxidative phosphorylation in the PC12 cell, a neuronal model. Biochem. Pharmacol. 53, 1485–1492 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Joseph, E. K., Chen, X., Khasar, S. G. & Levine, J. D. Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 107, 147–158 (2004).

    Article  PubMed  Google Scholar 

  105. Aley, K. O. & Levine, J. D. Different peripheral mechanisms mediate enhanced nociception in metabolic/toxic and traumatic painful peripheral neuropathies in the rat. Neuroscience 111, 389–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Aley, K. O., McCarter, G. & Levine, J. D. Nitric oxide signaling in pain and nociceptor sensitization in the rat. J. Neurosci. 18, 7008–7014 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dina, O. A. et al. Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J. Neurosci. 20, 8614–8619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmued, L. C. et al. Evaluation of brain and nerve pathology in rats chronically dosed with ddI or isoniazid. Neurotoxicol. Teratol. 18, 555–563 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Tyor, W. R., Wesselingh, S. L., Griffin, J. W., McArthur, J. C. & Griffin, D. E. Unifying hypothesis for the pathogenesis of HIV-associated dementia complex, vacuolar myelopathy, and sensory neuropathy. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9, 379–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Wulff, E. A., Wang, A. K. & Simpson, D. M. HIV-associated peripheral neuropathy: epidemiology, pathophysiology and treatment. Drugs 59, 1251–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Norton, G. R., Sweeney, J., Marriott, D., Law, M. G. & Brew, B. J. Association between HIV distal symmetric polyneuropathy and Mycobacterium avium complex infection. J. Neurol. Neurosurg. Psychiatry 61, 606–609 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Herzberg, U. & Sagen, J. Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J. Neuroimmunol. 116, 29–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Milligan, E. D. et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci. 21, 2808–2819 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Foley, J. F. et al. Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes. J. Immunol. 174, 4892–4900 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Ma, Q. -P. The expression of bradykinin B1 receptors on primary sensory neurones that give rise to small caliber sciatic nerve fibres in rats. Neuroscience 107, 665–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Ma, Q. P., Hill, R. & Sirinathsinghji, D. Basal expression of bradykinin B1 receptor in peripheral sensory ganglia in the rat. Neuroreport 11, 4003–4005 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Wotherspoon, G. & Winter, J. Bradykinin B1 receptor is constitutively expressed in the rat sensory nervous system. Neurosci. Lett. 294, 175–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Davis, C. L. et al. B1 bradykinin receptors and sensory neurones. Br. J. Pharmacol. 118, 1469–1476 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Davis, A. J. & Perkins, M. N. Substance P and capsaicin-induced mechanical hyperalgesia in the rat knee joint; the involvement of bradykinin B1 and B2 receptors. Br. J. Pharmacol. 118, 2206–2212 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Chuang, H. -H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Grimm, M. C. et al. Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J. Exp. Med. 188, 317–325 (1998). Showed that opioids could directly interact with chemokine receptors, thereby effectively desensitizing them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, N., Rogers, T. J., Caterina, M. & Oppenheim, J. J. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J. Immunol. 173, 594–599 (2004). Describes the observation that proinflammatory chemokines could interact with opioid receptors, thereby effectively desensitizing the neuronal receptors.

    Article  CAS  PubMed  Google Scholar 

  124. Rogers, T. J. & Peterson, P. K. Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol. 24, 116–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, C. et al. Heterodimerization and cross-desensitization between the m-opioid receptor and the chemokine CCR5 receptor. Eur. J. Pharmacol. 483, 175–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Suzuki, S., Chuang, L. F., Yau, P., Doi, R. H. & Chuang, R. Y. Interactions of opioid and chemokine receptors: oligomerization of m, k, and d with CCR5 on immune cells. Exp. Cell Res. 280, 192–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Toth, P. T., Ren, D. & Miller, R. J. Regulation of CXCR4 receptor dimerization by the chemokine SDF-1α and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J. Pharmacol. Exp. Ther. 310, 8–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Szabo, I. et al. Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J. Leukoc. Biol. 74, 1074–1082 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Raghavendra, V., Rutkowski, M. D. & DeLeo, J. A. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J. Neurosci. 22, 9980–9989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brack, A. et al. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain 112, 229–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Mousa, S. A. Morphological correlates of immune-mediated peripheral opioid analgesia. Adv. Exp. Med. Biol. 521, 77–87 (2003).

    CAS  PubMed  Google Scholar 

  132. Neilan, C. L. et al. Experimental neuropathic pain in mice. Soc. Neurosci. Abstr. 17.4 (2004).

  133. Horuk, R. Development and evaluation of pharmacological agents targeting chemokine receptors. Methods 29, 369–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. De Clercq, E. The bicyclam AMD3100 story. Nature Rev. Drug Discov. 2, 581 (2003).

    Article  CAS  Google Scholar 

  135. Onuffer, J. J. & Horuk, R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol. Sci. 23, 459–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Daly, C. & Rollins, B. J. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation 10, 247–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Bertini, R. et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc. Natl Acad. Sci. USA 101, 11791–11796 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ribeiro, S. & Horuk, R. The clinical potential of chemokine receptor antagonists. Pharmacol. Ther. 107, 44–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Luger, N. M., Mach, D. B., Sevcik, M. A. & Mantyh, P. W. Bone cancer pain: from model to mechanism to therapy. J. Pain Symptom Manage. 29, S32–S46 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Polomano, R. C., Mannes, A. J., Clark, U. S. & Bennett, G. J. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94, 293–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Calcutt, N. A. Experimental models of painful diabetic neuropathy. J. Neurol. Sci. 220, 137–139 (2004).

    Article  PubMed  Google Scholar 

  142. Mills, C. D., Hains, B. C., Johnson, K. M. & Hulsebosch, C. E. Strain and model differences in behavioral outcomes after spinal cord injury in rat. J. Neurotrauma 18, 743–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Aicher, S. A., Silverman, M. B., Winkler, C. W. & Bebo, B. F. Jr. Hyperalgesia in an animal model of multiple sclerosis. Pain 110, 560–570 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Wallace, V. C. J., Cottrell, D. F., Brophy, P. J. & Fleetwood-Walker, S. M. Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. J. Neurosci. 23, 3221–3233 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kury, P., Greiner-Petter, R., Cornely, C., Jurgens, T. & Muller, H. W. Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells. J. Neurosci. 22, 7586–7595 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

B1 receptor

B2 receptor

CCR1

CCR2

CCR5

CX3CL1

CX3CR1

CXCR1

CXCR2

CXCR3

CXCR4

IL-1β

IL-6

LIF

MCP1

RANTES

SDF1

TNFα

TRPV1

OMIM

Guillain–Barré syndrome

HIV-1

Glossary

GLIAL FIBRILLARY ACIDIC PROTEIN

(GFAP). Principle astrocyte intermediate filament that is upregulated in Schwann cells following injury. It is likely to play a direct role in the subsequent inflammatory response.

NOCICEPTORS

Sensory neurons that respond to pain and noxious stimulation.

PARATHESIAS

Abnormal or unpleasant sensations that result from injury to one or more nerves, often described by patients as numbness or as prickly, stinging or burning feelings.

MYELINOPATHY

The degeneration of myelin sheaths of neurons.

BRADYKININ

Small peptide of the kinin family that excites peripheral nerves and regulates the contraction of blood vessels and fluid transport by epithelia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, F., Bhangoo, S. & Miller, R. Chemokines: Integrators of Pain and Inflammation. Nat Rev Drug Discov 4, 834–844 (2005). https://doi.org/10.1038/nrd1852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing