Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential

Key Points

  • Nociceptin/orphanin FQ (N/OFQ) is the first example of a peptide that was isolated by reverse pharmacology.

  • N/OFQ activates a Gi-protein-coupled receptor, NOP, and this peptide–receptor system has been implicated in a diverse range of biological functions including (but not limited to) pain, reward/drug abuse, cardiovascular control and immune function.

  • Many peptide and non-peptide ligands are available. The main chemical classes of the current non-peptides are morphinans (for example, buprenorphine; mixed); aminoquinolines (for example, JTC-801; antagonist); benzimidazopiperidines (for example, J-113397; antagonist); aryl-piperidines (for example, SB-612111; antagonist); and spiropiperidines (for example, Ro64-6198; agonist).

  • Central NOP antagonists have, variably, antinociceptive (supraspinal), and antidepressant effects. Central NOP agonists have anti-opioid (supraspinal), antinociceptive (spinal), anxiolytic effects and produce bradycardia/hypotension.

  • Peripheral NOP agonists have antinociceptive, vasodilatory and aquaretic effects. They also produce bardycardia and hypotension, and inhibit bladder activity.

  • A small number of molecules are in clinical development: ZP120, a peptide in Phase I and II for congestive heart failure, and JTC-801, a non-peptide antagonist in Phase II for pain.

Abstract

Identification of the enigmatic nociceptin/orphanin FQ peptide (N/OFQ) in 1995 represented the first successful use of reverse pharmacology and led to deorphanization of the N/OFQ receptor (NOP). Subsequently, the N/OFQ–NOP system has been implicated in a wide range of biological functions, including pain, drug abuse, cardiovascular control and immunity. Although this could be considered a hurdle for the development of pharmaceuticals selective for a specific disease indication, NOP represents a viable drug target. This article describes potential clinical indications and highlights the current status of the very limited number of clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pleiotropic effects of nociceptin/orphanin FQ (N/OFQ) on major organ systems.
Figure 2: Non-peptide nociceptin/orphanin FQ receptor (NOP) ligands.
Figure 3: Schematic to describe the interrelationship between the anatomical site(s) underlying the actions of N/OFQ on pain.
Figure 4: Involvement of N/OFQ–NOP in depression and anxiety: NOP antagonists are antidepressant and agonists are anxiolytic.

Similar content being viewed by others

References

  1. Meunier, J. C. et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377, 532–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Reinscheid, R. K. et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270, 792–794 (1995). These two references represent the beginning of the N/OFQ–NOP field. In addition, they are of interest to the general pharmacologist as they are the first example of successful reverse pharmacology (deorphanization).

    Article  CAS  PubMed  Google Scholar 

  3. Mogil, J. S. & Pasternak, G. W. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol. Rev. 53, 381–415 (2001).

    CAS  PubMed  Google Scholar 

  4. Chiou, L. C. et al. Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr. Drug Targets. 8, 117–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Zeilhofer, H. U. & Calo, G. Nociceptin/orphanin FQ and its receptor — potential targets for pain therapy? J. Pharmacol. Exp. Ther. 306, 423–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Malinowska, B., Godlewski, G. & Schlicker, E. Function of nociceptin and opioid OP4 receptors in the regulation of the cardiovascular system. J. Physiol. Pharmacol. 53, 301–324 (2002).

    CAS  PubMed  Google Scholar 

  7. Dhawan, B. N. et al. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 48, 567–592 (1996).

    CAS  PubMed  Google Scholar 

  8. Zollner, C. & Stein, C. Opioids. Handb. Exp. Pharmacol. 177, 31–63 (2007).

    Article  Google Scholar 

  9. Hawes, B. E., Graziano, M. P. & Lambert, D. G. Cellular actions of nociceptin: transduction mechanisms. Peptides 21, 961–967 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. New, D. C. & Wong, Y. H. The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals 11, 197–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Knoflach, F., Reinscheid, R. K., Civelli, O. & Kemp, J. A. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J. Neurosci. 16, 6657–6664 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaughan, C. W. & Christie, M. J. Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br. J. Pharmacol. 117, 1609–1611 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicol, B., Lambert, D. G., Rowbotham, D. J., Smart, D. & McKnight, A. T. Nociceptin induced inhibition of K+ evoked glutamate release from rat cerebrocortical slices. Br. J. Pharmacol. 119, 1081–1083 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marti, M. et al. Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex. Br. J. Pharmacol. 138, 91–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giuliani, S. & Maggi, C. A. Inhibition of tachykinin release from peripheral endings of sensory nerves by nociceptin, a novel opioid peptide. Br. J. Pharmacol. 118, 1567–1569 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstead, W. M. Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur. J. Pharmacol. 529, 129–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chan, J. S. et al. Pertussis toxin-insensitive signaling of the ORL1 receptor: coupling to Gz and G16 proteins. J. Neurochem. 71, 2203–2210 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Guerrini, R. et al. Address and message sequences for the nociceptin receptor: a structure–activity study of nociceptin-(1–13)-peptide amide. J. Med. Chem. 40, 1789–1793 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Guerrini, R. et al. A new selective antagonist of the nociceptin receptor. Br. J. Pharmacol. 123, 163–165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerrini, R. et al. N- and C-terminal modifications of nociceptin/orphanin FQ generate highly potent NOP receptor ligands. J. Med. Chem. 48, 1421–1427 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Arduin, M. et al. Synthesis and biological activity of nociceptin/orphanin FQ analogues substituted in position 7 or 11 with Cα, α-dialkylated amino acids. Bioorg. Med. Chem. 15, 4434–4443 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Calo, G. et al. Characterization of [Nphe1]nociceptin(1–13)NH2, a new selective nociceptin receptor antagonist. Br. J. Pharmacol. 129, 1183–1193 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Calo, G. et al. [Nphe1, Arg14, Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br. J. Pharmacol. 136, 303–311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calo, G. et al. UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS Drug Rev. 11, 97–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dooley, C. T. et al. Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J. Pharmacol. Exp. Ther. 283, 735–741 (1997).

    CAS  PubMed  Google Scholar 

  26. Rizzi, A. et al. Pharmacological characterization of the novel nociceptin/orphanin FQ receptor ligand, ZP120: in vitro and in vivo studies in mice. Br. J. Pharmacol. 137, 369–374 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larsen, B. D., Petersen, J. S., Harlow, K. & Kapusta, D. R. Novel peptide conjugates. WO 01/98324 (2001).

  28. Butour, J. L., Moisand, C., Mazarguil, H., Mollereau, C. & Meunier, J. C. Recognition and activation of the opioid receptor-like ORL 1 receptor by nociceptin, nociceptin analogs and opioids. Eur. J. Pharmacol. 321, 97–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Okawa, H. et al. Comparison of the effects of [Phe1 psi(CH2-NH)Gly2]nociceptin(1–13)NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br. J. Pharmacol. 127, 123–130 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizzi, A. et al. [Nphe1]nociceptin-(1–13)-NH2 antagonizes nociceptin effects in the mouse colon. Eur. J. Pharmacol. 385, R3–R5 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Mason, S. L., Ho, M., Nicholson, J. & McKnight, A. T. In vitro characterization of Ac-RYYRWK-NH2, Ac-RYYRIK-NH2 and [Phe1CPsi(CH2-NHGly2] nociceptin(1–13)NH2 at rat native and recombinant ORL(1) receptors. Neuropeptides 35, 244–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. McDonald, J. et al. Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: studies using the ecdysone-inducible mammalian expression system. Br. J. Pharmacol. 140, 61–70 (2003). Much of the early ligand classification was based on different end points in systems with different levels of expression. This study addresses this problem using an inducible expression system for NOP. Of note is that the variably classified ligand [F/G]N/OFQ(1–13)NH 2 could be made to behave as full agonist, partial agonist and antagonist as a function of receptor density. This ligand is now classified as a partial agonist.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker, J. A. et al. Ligands for kappa-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library. J. Biol. Chem. 274, 27513–27522 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Picone, D., D'Ursi, A., Motta, A., Tancredi, T. & Temussi, P. A. Conformational preferences of [Leu5]enkephalin in biomimetic media. Investigation by 1H NMR. Eur. J. Biochem. 192, 433–439 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Hruby, V. J. Designing peptide receptor agonists and antagonists. Nature Rev. Drug Discov. 1, 847–858 (2002).

    Article  CAS  Google Scholar 

  36. Zaveri, N. Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci. 73, 663–678 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Varty, G. B. et al. The anxiolytic-like effects of the novel, orally active nociceptin NOP receptor agonist, 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J. Pharmacol. Exp. Ther. 20 May 2008 (doi:10.1124/jpet.108.136937).

    Article  CAS  Google Scholar 

  38. Blakeney, J. S., Reid, R. C., Le, G. T. & Fairlie, D. P. Nonpeptidic ligands for peptide-activated G protein-coupled receptors. Chem. Rev. 107, 2960–3041 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Hirao, A. et al. Pharmacological properties of a novel nociceptin/orphanin FQ receptor agonist, 2-(3,5-dimethylpiperazin-1-yl)-1-[1-(1-methylcyclooctyl)piperidin-4-yl]-1H-benzim idazole, with anxiolytic potential. Eur. J. Pharmacol. 579, 189–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Broer, B. M., Gurrath, M. & Holtje, H. D. Molecular modelling studies on the ORL1-receptor and ORL1-agonists. J. Comput. Aided Mol. Des. 17, 739–754 (2003).

    Article  PubMed  Google Scholar 

  41. Topham, C. M., Mouledous, L., Poda, G., Maigret, B. & Meunier, J. C. Molecular modelling of the ORL1 receptor and its complex with nociceptin. Protein Eng. 11, 1163–1179 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Zaveri, N., Jiang, F., Olsen, C., Polgar, W. & Toll, L. Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS J. 7, e345–e352 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heinricher, M. M., McGaraughty, S. & Grandy, D. K. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J. Neurophysiol. 78, 3351–3358 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Pan, Z., Hirakawa, N. & Fields, H. L. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 26, 515–522 (2000). Central NOP activation produces pro- and antinociceptive effects when administered supraspinally and spinally, respectively. This important paper describes a mechanism (based in the medulla) to explain the pro-nociceptive or anti-opioid actions of supraspinal N/OFQ.

    Article  CAS  PubMed  Google Scholar 

  45. Tian, J. H. et al. Endogenous orphanin FQ: evidence for a role in the modulation of electroacupuncture analgesia and the development of tolerance to analgesia produced by morphine and electroacupuncture. Br. J. Pharmacol. 124, 21–26 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. King, M. A., Rossi, G. C., Chang, A. H., Williams, L. & Pasternak, G. W. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett. 223, 113–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Ko, M. C., Wei, H., Woods, J. H. & Kennedy, R. T. Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J. Pharmacol. Exp. Ther. 318, 1257–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Mogil, J. S. et al. Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75, 333–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Inoue, M. et al. In vivo pain-inhibitory role of nociceptin/orphanin FQ in spinal cord. J. Pharmacol. Exp. Ther. 305, 495–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Faber, E. S., Chambers, J. P., Evans, R. H. & Henderson, G. Depression of glutamatergic transmission by nociceptin in the neonatal rat hemisected spinal cord preparation in vitro. Br. J. Pharmacol. 119, 189–190 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inoue, M. et al. Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J. Pharmacol. Exp. Ther. 291, 308–313 (1999).

    CAS  PubMed  Google Scholar 

  52. Yamamoto, T., Sakashita, Y. & Nozaki-Taguchi, N. Antagonism of ORLI receptor produces an algesic effect in the rat formalin test. Neuroreport 12, 1323–1327 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ozaki, S. et al. In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur. J. Pharmacol. 402, 45–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Zaratin, P. F. et al. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetra-hydro-5H-benzocyclohepten-5-ol (SB-612111). J. Pharmacol. Exp. Ther. 308, 454–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Rizzi, A. et al. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain 124, 100–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Depner, U. B., Reinscheid, R. K., Takeshima, H., Brune, K. & Zeilhofer, H. U. Normal sensitivity to acute pain, but increased inflammatory hyperalgesia in mice lacking the nociceptin precursor polypeptide or the nociceptin receptor. Eur. J. Neurosci. 17, 2381–2387 (2003).

    Article  PubMed  Google Scholar 

  57. Andoh, T., Yageta, Y., Takeshima, H. & Kuraishi, Y. Intradermal nociceptin elicits itch-associated responses through leukotriene B4 in mice. J. Invest. Dermatol. 123, 196–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Giuliani, S., Lecci, A., Tramontana, M. & Maggi, C. A. The inhibitory effect of nociceptin on the micturition reflex in anaesthetized rats. Br. J. Pharmacol. 124, 1566–1572 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peluso, J. et al. Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J. Neuroimmunol. 81, 184–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Stein, C., Schafer, M. & Machelska, H. Attacking pain at its source: new perspectives on opioids. Nature Med. 9, 1003–1008 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Ko, M. C. et al. Orphanin FQ inhibits capsaicin-induced thermal nociception in monkeys by activation of peripheral ORL1 receptors. Br. J. Pharmacol. 135, 943–950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Obara, I., Przewlocki, R. & Przewlocka, B. Spinal and local peripheral antiallodynic activity of Ro64-6198 in neuropathic pain in the rat. Pain 116, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Kolesnikov, Y. A. & Pasternak, G. W. Peripheral orphanin FQ/nociceptin analgesia in the mouse. Life Sci. 64, 2021–2028 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Collett, B. J. Opioid tolerance: the clinical perspective. Br. J. Anaesth. 81, 58–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Hao, J. X., Wiesenfeld-Hallin, Z. & Xu, X. J. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Neurosci. Lett. 223, 49–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Ueda, H. et al. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci. Lett. 237, 136–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Ueda, H., Inoue, M., Takeshima, H. & Iwasawa, Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J. Neurosci. 20, 7640–7647 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rizzi, A. et al. The nociceptin/orphanin FQ receptor antagonist, [Nphe1]NC(1–13)NH2, potentiates morphine analgesia. Neuroreport 11, 2369–2372 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Chung, S., Pohl, S., Zeng, J., Civelli, O. & Reinscheid, R. K. Endogenous orphanin FQ/nociceptin is involved in the development of morphine tolerance. J. Pharmacol. Exp. Ther. 318, 262–267 (2006). References 66 and 69 illustrate the effects of NOP and ppN/OFQ knockout on morphine tolerance. Addressing the system from both 'ends' indicates that blockade of NOP–N/OFQ signalling via knockout reduces morphine tolerance, a response also seen with NOP antagonists. This gives some credibility to the development of μ-opioid receptor agonist/NOP antagonist chimeric molecules.

    Article  CAS  PubMed  Google Scholar 

  70. Barnes, T. A. & Lambert, D. G. Editorial III: Nociceptin/orphanin FQ peptide-receptor system: are we any nearer the clinic? Br. J. Anaesth. 93, 626–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ko, M. H., Kim, Y. H., Woo, R. S. & Kim, K. W. Quantitative analysis of nociceptin in blood of patients with acute and chronic pain. Neuroreport 13, 1631–1633 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Anderberg, U. M., Liu, Z., Berglund, L. & Nyberg, F. Plasma levels on nociceptin in female fibromyalgia syndrome patients. Z. Rheumatol. 57 (Suppl. 2), 77–80 (1998).

    Article  PubMed  Google Scholar 

  73. Ertsey, C., Hantos, M., Bozsik, G. & Tekes, K. Circulating nociceptin levels during the cluster headache period. Cephalalgia 24, 280–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Brooks, H. et al. Identification of nociceptin in human cerebrospinal fluid: comparison of levels in pain and non-pain states. Pain 78, 71–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Mork, H., Hommel, K., Uddman, R., Edvinsson, L. & Jensen, R. Does nociceptin play a role in pain disorders in man? Peptides 23, 1581–1587 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Wong, M. L. & Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Rev. Drug Discov. 3, 136–151 (2004).

    Article  CAS  Google Scholar 

  77. Christmas, D. M. & Hood, S. D. Recent developments in anxiety disorders. Recent Patents CNS Drug Discov. 1, 289–298 (2006).

    Article  CAS  Google Scholar 

  78. Gavioli, E. C. & Calo, G. Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. Naunyn Schmiedebergs Arch. Pharmacol. 372, 319–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jenck, F. et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc. Natl Acad. Sci. USA 94, 14854–14858 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gavioli, E. C., Rae, G. A., Calo, G., Guerrini, R. & De Lima, T. C. Central injections of nocistatin or its C-terminal hexapeptide exert anxiogenic-like effect on behaviour of mice in the plus-maze test. Br. J. Pharmacol. 136, 764–772 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Redrobe, J. P., Calo, G., Regoli, D. & Quirion, R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch. Pharmacol. 365, 164–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Gavioli, E. C. et al. Blockade of nociceptin/orphanin FQ-NOP receptor signalling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur. J. Neurosci. 17, 1987–1990 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Gavioli, E. C. et al. Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch. Pharmacol. 369, 547–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Wichmann, J. et al. 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one derivatives as orphanin FQ receptor agonists. Bioorg. Med. Chem. Lett. 9, 2343–2348 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Jenck, F. et al. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc. Natl Acad. Sci. USA 97, 4938–4943 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varty, G. B. et al. Characterization of the nociceptin receptor (ORL-1) agonist, Ro64-6198, in tests of anxiety across multiple species. Psychopharmacology (Berl.) 182, 132–143 (2005).

    Article  CAS  Google Scholar 

  87. Fernandez, F., Misilmeri, M. A., Felger, J. C. & Devine, D. P. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology 29, 59–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Dautzenberg, F. M. et al. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J. Pharmacol. Exp. Ther. 298, 812–819 (2001). Ro64-6198 is arguably one of the most important non-peptide agonists in the NOP field. In this early paper the Roche group describe anxiolysis without tolerance.

    CAS  PubMed  Google Scholar 

  89. Ouagazzal, A. M., Moreau, J. L., Pauly-Evers, M. & Jenck, F. Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene. Behav. Brain Res. 144, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Koster, A. et al. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl Acad. Sci. USA 96, 10444–10449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Le Maitre, E., Vilpoux, C., Costentin, J. & Leroux-Nicollet, I. Opioid receptor-like 1 (NOP) receptors in the rat dorsal raphe nucleus: evidence for localization on serotoninergic neurons and functional adaptation after 5,7-dihydroxytryptamine lesion. J. Neurosci. Res. 81, 488–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gavioli, E. C. et al. GABAA signalling is involved in N/OFQ anxiolytic-like effects but not in nocistatin anxiogenic-like action as evaluated in the mouse elevated plus maze. Peptides 20 May 2008 (doi:10.1016/j.peptides.2008.04.004).

    Article  CAS  PubMed  Google Scholar 

  93. Belmaker, R. H. & Agam, G. Major depressive disorder. N. Engl. J. Med. 358, 55–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Connor, M., Vaughan, C. W., Chieng, B. & Christie, M. J. Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br. J. Pharmacol. 119, 1614–1618 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gu, H. et al. Changes and significance of orphanin and serotonin in patients with postpartum depression. Zhonghua Fu Chan Ke Za Zhi 38, 727–728 (2003) (in Chinese).

    PubMed  Google Scholar 

  96. Shoblock, J. R. The pharmacology of Ro 64-6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity. CNS Drug Rev. 13, 107–136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzalez, G., Oliveto, A. & Kosten, T. R. Combating opiate dependence: a comparison among the available pharmacological options. Expert Opin. Pharmacother. 5, 713–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Spanagel, R. & Kiefer, F. Drugs for relapse prevention of alcoholism: ten years of progress. Trends Pharmacol. Sci. 29, 109–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Amato, L. et al. Psychosocial and pharmacological treatments versus pharmacological treatments for opioid detoxification. Cochrane Database Syst. Rev. CD005031 (2004).

  100. Assanangkornchai, S. & Srisurapanont, M. The treatment of alcohol dependence. Curr. Opin. Psychiatry 20, 222–227 (2007).

    Article  PubMed  Google Scholar 

  101. Ciccocioppo, R., Panocka, I., Polidori, C., Regoli, D. & Massi, M. Effect of nociceptin on alcohol intake in alcohol-preferring rats. Psychopharmacology (Berl.) 141, 220–224 (1999).

    Article  CAS  Google Scholar 

  102. Ciccocioppo, R. et al. Pharmacological characterization of the nociceptin receptor which mediates reduction of alcohol drinking in rats. Peptides 23, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Kuzmin, A., Sandin, J., Terenius, L. & Ogren, S. O. Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J. Pharmacol. Exp. Ther. 304, 310–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kotlinska, J. et al. Nociceptin inhibits acquisition of amphetamine-induced place preference and sensitization to stereotypy in rats. Eur. J. Pharmacol. 474, 233–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Kotlinska, J., Wichmann, J., Legowska, A., Rolka, K. & Silberring, J. Orphanin FQ/nociceptin but not Ro 65-6570 inhibits the expression of cocaine-induced conditioned place preference. Behav. Pharmacol. 13, 229–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Sakoori, K. & Murphy, N. P. Central administration of nociceptin/orphanin FQ blocks the acquisition of conditioned place preference to morphine and cocaine, but not conditioned place aversion to naloxone in mice. Psychopharmacology (Berl.) 172, 129–136 (2004).

    Article  CAS  Google Scholar 

  107. Sakoori, K. & Murphy, N. P. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 33, 877–891 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Murphy, N. P., Ly, H. T. & Maidment, N. T. Intracerebroventricular orphanin FQ/nociceptin suppresses dopamine release in the nucleus accumbens of anaesthetized rats. Neuroscience 75, 1–4 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Murphy, N. P. & Maidment, N. T. Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J. Neurochem. 73, 179–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Di Giannuario, A. & Pieretti, S. Nociceptin differentially affects morphine-induced dopamine release from the nucleus accumbens and nucleus caudate in rats. Peptides 21, 1125–1130 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Di Giannuario, A., Pieretti, S., Catalani, A. & Loizzo, A. Orphanin FQ reduces morphine-induced dopamine release in the nucleus accumbens: a microdialysis study in rats. Neurosci. Lett. 272, 183–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Lutfy, K., Do, T. & Maidment, N. T. Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology (Berl.) 154, 1–7 (2001).

    Article  CAS  Google Scholar 

  113. Meis, S. & Pape, H. C. Control of glutamate and GABA release by nociceptin/orphanin FQ in the rat lateral amygdala. J. Physiol. 532, 701–712 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roberto, M. & Siggins, G. R. Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc. Natl Acad. Sci. USA 103, 9715–9720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Okawa, H. et al. Effects of nociceptinNH2 and [Nphe1]nociceptin(1–13)NH2 on rat brain noradrenaline release in vivo and in vitro. Neurosci. Lett. 303, 173–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Ciccocioppo, R., Angeletti, S., Panocka, I. & Massi, M. Nociceptin/orphanin FQ and drugs of abuse. Peptides 21, 1071–1080 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Ciccocioppo, R., Economidou, D., Fedeli, A. & Massi, M. The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: a review of recent work in alcohol-preferring rats. Physiol. Behav. 79, 121–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Ciccocioppo, R. et al. Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology (Berl.) 172, 170–178 (2004).

    Article  CAS  Google Scholar 

  119. Kuzmin, A., Kreek, M. J., Bakalkin, G. & Liljequist, S. The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology 32, 902–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Economidou, D. et al. Effect of novel nociceptin/orphanin FQ-NOP receptor ligands on ethanol drinking in alcohol-preferring msP rats. Peptides 27, 3299–3306 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ciccocioppo, R. et al. Buprenorphine reduces alcohol drinking through activation of the nociceptin/orphanin FQ-NOP receptor system. Biol. Psychiatry 61, 4–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Economidou, D. et al. Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol. Psychiatry 24 Mar 2008 (doi:10.1016/j.biopsych.2008.02.004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xuei, X. et al. Association analysis of genes encoding the nociceptin receptor (OPRL1) and its endogenous ligand (PNOC) with alcohol or illicit drug dependence. Addict. Biol. 13, 80–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Huang, J., Young, B., Pletcher, M. T., Heilig, M. & Wahlestedt, C. Association between the nociceptin receptor gene (OPRL1) single nucleotide polymorphisms and alcohol dependence. Addict. Biol. 13, 88–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Kapusta, D. R. Neurohumoral effects of orphanin FQ/nociceptin: relevance to cardiovascular and renal function. Peptides 21, 1081–1099 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Bigoni, R. et al. Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. Naunyn Schmiedebergs Arch. Pharmacol. 359, 160–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Kapusta, D. R., Chang, J. K. & Kenigs, V. A. Central administration of [Phe1 psi(CH2-NH)Gly2]nociceptin(1–13)-NH2 and orphanin FQ/nociceptin (OFQ/N) produce similar cardiovascular and renal responses in conscious rats. J. Pharmacol. Exp. Ther. 289, 173–180 (1999).

    CAS  PubMed  Google Scholar 

  128. Burmeister, M. A., Ansonoff, M. A., Pintar, J. E. & Kapusta, D. R. Nociceptin/orphanin FQ (N/OFQ)-evoked bradycardia, hypotension and diuresis are absent in N/OFQ peptide (NOP) receptor knockout (NOP−/−) mice. J. Pharmacol. Exp. Ther. 6 Jun 2008 (doi:10.1124/jpet.107.135905v1).

  129. Giuliani, S., Tramontana, M., Lecci, A. & Maggi, C. A. Effect of nociceptin on heart rate and blood pressure in anaesthetized rats. Eur. J. Pharmacol. 333, 177–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Chu, X., Xu, N., Li, P., Mao, L. & Wang, J. Q. Inhibition of cardiovascular activity following microinjection of novel opioid-like neuropeptide nociceptin (orphanin FQ) into the rat rostral ventrolateral medulla. Brain Res. 829, 134–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Kapusta, D. R. et al. Functional selectivity of nociceptin/orphanin FQ peptide receptor partial agonists on cardiovascular and renal function. J. Pharmacol. Exp. Ther. 314, 643–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Champion, H. C. et al. Nitric oxide release mediates vasodilator responses to endomorphin 1 but not nociceptin/OFQ in the hindquarters vascular bed of the rat. Peptides 19, 1595–1602 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Champion, H. C., Pierce, R. L. & Kadowitz, P. J. Nociceptin, a novel endogenous ligand for the ORL1 receptor, dilates isolated resistance arteries from the rat. Regul. Pept. 78, 69–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Champion, H. C. et al. Role of nitric oxide in mediating vasodilator responses to opioid peptides in the rat. Clin. Exp. Pharmacol. Physiol. 29, 229–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Armstead, W. M. Role of Nociceptin/orphanin FQ in the physiologic and pathologic control of the cerebral circulation. Exp. Biol. Med. (Maywood) 227, 957–968 (2002).

    Article  CAS  Google Scholar 

  136. Brookes, Z. L. et al. Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine. Am. J. Physiol. Heart Circ. Physiol. 293, H2977–H2985 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Tekes, K. et al. Stimulating effect of nociceptin on histamine release in the rat brain? Inflamm. Res. 54 (Suppl. 1), S38–S39 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Kimura, T. et al. Intradermal application of nociceptin increases vascular permeability in rats: the possible involvement of histamine release from mast cells. Eur. J. Pharmacol. 407, 327–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. O'Brien, J. M., Jr, Ali, N. A., Aberegg, S. K. & Abraham, E. Sepsis. Am. J. Med. 120, 1012–1022 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Williams, J. P. et al. Nociceptin and urotensin-II concentrations in critically ill patients with sepsis. Br. J. Anaesth. 100, 810–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Dumont, M. & Lemaire, S. Characterization of the high affinity [3H]nociceptin binding site in membrane preparations of rat heart: correlations with the non-opioid dynorphin binding site. J. Mol. Cell Cardiol. 30, 2751–2760 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Berger, H., Albrecht, E., Wallukat, G. & Bienert, M. Antagonism by acetyl-RYYRIK-NH2 of G protein activation in rat brain preparations and of chronotropic effect on rat cardiomyocytes evoked by nociceptin/orphanin FQ. Br. J. Pharmacol. 126, 555–558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim, K. W. et al. Nociceptin/orphanin FQ increases ANP secretion in neonatal cardiac myocytes. Life Sci. 70, 1065–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Arndt, M. L., Wu, D., Soong, Y. & Szeto, H. H. Nociceptin/orphanin FQ increases blood pressure and heart rate via sympathetic activation in sheep. Peptides 20, 465–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Mao, L. & Wang, J. Q. Microinjection of nociceptin (orphanin FQ) into nucleus tractus solitarii elevates blood pressure and heart rate in both anesthetized and conscious rats. J. Pharmacol. Exp. Ther. 294, 255–262 (2000).

    CAS  PubMed  Google Scholar 

  146. Hadrup, N. et al. Differential down-regulation of aquaporin-2 in rat kidney zones by peripheral nociceptin/orphanin FQ receptor agonism and vasopressin type-2 receptor antagonism. J. Pharmacol. Exp. Ther. 323, 516–524 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Simonsen, U., Laursen, B. E. & Petersen, J. S. ZP120 causes relaxation by pre-junctional inhibition of noradrenergic neurotransmission in rat mesenteric resistance arteries. Br. J. Pharmacol. 153, 1185–1194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lazzeri, M. & Spinelli, M. The challenge of overactive bladder therapy: alternative to antimuscarinic agents. Int. Braz. J. Urol. 32, 620–630 (2006).

    Article  PubMed  Google Scholar 

  149. Calo, G. et al. The mouse vas deferens: a pharmacological preparation sensitive to nociceptin. Eur. J. Pharmacol. 311, R3–R5 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Berzetei-Gurske, I. P., Schwartz, R. W. & Toll, L. Determination of activity for nociceptin in the mouse vas deferens. Eur. J. Pharmacol. 302, R1–R2 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Giuliani, S., Lecci, A., Tramontana, M. & Maggi, C. A. Nociceptin protects capsaicin-sensitive afferent fibers in the rat urinary bladder from desensitization. Naunyn Schmiedebergs Arch. Pharmacol. 360, 202–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Lecci, A. et al. Tachykinin-mediated effect of nociceptin in the rat urinary bladder in vivo. Eur. J. Pharmacol. 389, 99–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Lecci, A., Giuliani, S., Meini, S. & Maggi, C. A. Nociceptin and the micturition reflex. Peptides 21, 1007–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Lazzeri, M. et al. Urodynamic and clinical evidence of acute inhibitory effects of intravesical nociceptin/orphanin FQ on detrusor overactivity in humans: a pilot study. J. Urol. 166, 2237–2240 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Lazzeri, M. et al. Urodynamic effects of intravesical nociceptin/orphanin FQ in neurogenic detrusor overactivity: a randomized, placebo-controlled, double-blind study. Urology 61, 946–950 (2003).

    Article  PubMed  Google Scholar 

  156. Lazzeri, M. et al. Daily intravesical instillation of 1 mg nociceptin/orphanin FQ for the control of neurogenic detrusor overactivity: a multicenter, placebo controlled, randomized exploratory study. J. Urol. 176, 2098–2102 (2006). Third in a series of clinical papers examining the effects of intravesical administration of N/OFQ on bladder function in neurogenic detrusor overactivity incontinence. This study is important as it describes a technique that can be used by patients at home with a single daily administration increasing bladder capacity and decreasing the number of urine leakages lasting a full day.

    Article  CAS  PubMed  Google Scholar 

  157. Fowler, C. J., Griffiths. D. & de Groat, W. C. The neural control of micturition. Nature Rev. Neurosci. 9, 453–466 (2008).

    Article  CAS  Google Scholar 

  158. de Groat, W. C. et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J. Auton. Nerv. Syst. 30 (Suppl.), S71–S77 (1990).

    Article  PubMed  Google Scholar 

  159. Welters, I. D. Is immunomodulation by opioid drugs of clinical relevance? Curr. Opin. Anaesthesiol. 16, 509–513 (2003).

    Article  PubMed  Google Scholar 

  160. Budd, K. Pain management: is opioid immunosuppression a clinical problem? Biomed. Pharmacother. 60, 310–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Hussey, H. H. & Katz, S. Infections resulting from narcotic addiction; report of 102 cases. Am. J. Med. 9, 186–193 (1950).

    Article  CAS  PubMed  Google Scholar 

  162. Wei, G., Moss, J. & Yuan, C.-S. Opioid-induced immunosuppression: is it centrally mediated or peripherally mediated? Biochem. Pharmacol. 65, 1761–1766 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Williams, J. P. et al. Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not μ, δ, or κ opioid receptors. Anesth. Analg. 105, 998–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Kraus, J. et al. Regulation of μ-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J. Biol. Chem. 276, 43901–43908 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Trombella, S. et al. Nociceptin/orphanin FQ stimulates human monocyte chemotaxis via NOP receptor activation. Peptides 26, 1497–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Fiset, M. E., Gilbert, C., Poubelle, P. E. & Pouliot, M. Human neutrophils as a source of nociceptin: a novel link between pain and inflammation. Biochemistry 42, 10498–10505 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Waits, P. S., Purcell, W. M., Fulford, A. J. & McLeod, J. D. Nociceptin/orphanin FQ modulates human T cell function in vitro. J. Neuroimmunol. 149, 110–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Acosta, C. & Davies, A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J. Neurosci. Res. 86, 1077–1086 (2008). This is an interesting paper for a number of reasons. It describes an upregulation of N/OFQ in sensory neurons in response to lipopolysaccharide and it suggests a link (involving N/OFQ) between the nervous and immune systems. This paper has wider implications for a neuroimmune axis.

    Article  CAS  PubMed  Google Scholar 

  169. Goldfarb, Y., Reinscheid, R. K. & Kusnecov, A. W. Orphanin FQ/nociceptin interactions with the immune system in vivo: gene expression changes in lymphoid organs and regulation of the cytokine response to staphylococcal enterotoxin A. J. Neuroimmunol. 176, 76–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Kato, S. et al. Role of nociceptin/orphanin FQ (Noc/oFQ) in murine experimental colitis. J. Neuroimmunol. 161, 21–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. McLeod, R. L. et al. Antitussive effect of nociceptin/orphanin FQ in experimental cough models. Pulm. Pharmacol. Ther. 15, 213–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Lee, M. G., Undem, B. J., Brown, C. & Carr, M. J. Effect of nociceptin in acid-evoked cough and airway sensory nerve activation in guinea pigs. Am. J. Respir. Crit. Care Med. 173, 271–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Bolser, D. C., McLeod, R. L., Tulshian, D. B. & Hey, J. A. Antitussive action of nociceptin in the cat. Eur. J. Pharmacol. 430, 107–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Faisy, C. et al. Nociceptin inhibits vanilloid TRPV-1-mediated neurosensitization induced by fenoterol in human isolated bronchi. Naunyn Schmiedebergs Arch. Pharmacol. 370, 167–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. McLeod, R. L. et al. Antitussive profile of the NOP agonist Ro-64-6198 in the guinea pig. Pharmacology 71, 143–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Osinski, M. A. & Brown, D. R. Orphanin FQ/nociceptin: a novel neuromodulator of gastrointestinal function? Peptides 21, 999–1005 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Morini, G., De Caro, G., Guerrini, R., Massi, M. & Polidori, C. Nociceptin/orphanin FQ prevents ethanol-induced gastric lesions in the rat. Regul. Pept. 124, 203–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Grandi, D. et al. Nociceptin/orphanin FQ prevents gastric damage induced by cold-restraint stress in the rat by acting in the periphery. Peptides 28, 1572–1579 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Broccardo, M., Guerrini, R., Petrella, C. & Improta, G. Gastrointestinal effects of intracerebroventricularly injected nociceptin/orphaninFQ in rats. Peptides 25, 1013–1020 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Ishihara, S. et al. Gastric acid secretion stimulated by centrally injected nociceptin in urethane-anesthetized rats. Eur. J. Pharmacol. 441, 105–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Rizzi, D. et al. Effects of Ro 64-6198 in nociceptin/orphanin FQ-sensitive isolated tissues. Naunyn Schmiedebergs Arch. Pharmacol. 363, 551–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Spagnolo, B. et al. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(−)-cis-1-Methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vitro studies. J. Pharmacol. Exp. Ther. 321, 961–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Jann, M. W. & Slade, J. H. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy 27, 1571–1587 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Yuan, C. S. & Foss, J. F. Oral methylnaltrexone for opioid-induced constipation. JAMA 284, 1383–1384 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. DeBalli, P. & Breen, T. W. Intrathecal opioids for combined spinal-epidural analgesia during labour. CNS Drugs 17, 889–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Servin, F. S. & Billard, V. Remifentanil and other opioids. Handb. Exp. Pharmacol. 182, 283–311 (2008).

    Article  CAS  Google Scholar 

  187. Abdelhamid, E. E., Sultana, M., Portoghese, P. S. & Takemori, A. E. Selective blockage of δ opioid receptors prevents the development of morphine tolerance and dependence in mice. J. Pharmacol. Exp. Ther. 258, 299–303 (1991).

    CAS  PubMed  Google Scholar 

  188. Zhu, Y. et al. Retention of supraspinal δ-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron 24, 243–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Balboni, G. et al. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent δ-opioid receptor antagonist into a potent δ agonist and ligands with mixed properties. J. Med. Chem. 45, 713–720 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Fichna, J. et al. Synthesis and characterization of potent and selective μ-opioid receptor antagonists, [Dmt1, D-2-Nal4]endomorphin-1 (Antanal-1) and [Dmt1, D-2-Nal4]endomorphin-2 (Antanal-2). J. Med. Chem. 50, 512–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Spagnolo, B. et al. Activities of mixed NOP and μ-opioid receptor ligands. Br. J. Pharmacol. 153, 609–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Khroyan, T. V. et al. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/μ-opioid receptor partial agonist: analgesic and rewarding properties in mice. J. Pharmacol. Exp. Ther. 320, 934–943 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Pert, C. B. & Snyder, S. H. Opiate receptor: demonstration in nervous tissue. Science 179, 1011–1014 (1973).

    Article  CAS  PubMed  Google Scholar 

  194. Pert, C. B., Pasternak, G. & Snyder, S. H. Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182, 1359–1361 (1973).

    Article  CAS  PubMed  Google Scholar 

  195. Lapalu, S. et al. Comparison of the structure–activity relationships of nociceptin and dynorphin A using chimeric peptides. FEBS Lett. 417, 333–336 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Reinscheid, R. K., Ardati, A., Monsma, F. J. Jr. & Civelli, O. Structure–activity relationship studies on the novel neuropeptide orphanin FQ. J. Biol. Chem. 271, 14163–14168 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Dooley, C. T. & Houghten, R. A. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sci. 59, PL23–PL29 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. Calo, G. et al. Pharmacological characterization of nociceptin receptor: an in vitro study. Can. J. Physiol. Pharmacol. 75, 713–718 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Varani, K. et al. Pharmacology of [Tyr1]nociceptin analogs: receptor binding and bioassay studies. Naunyn Schmiedebergs Arch. Pharmacol. 360, 270–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Mollereau, C. et al. Distinct mechanisms for activation of the opioid receptor-like 1 and κ-opioid receptors by nociceptin and dynorphin A. Mol. Pharmacol. 55, 324–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Reinscheid, R. K., Higelin, J., Henningsen, R. A., Monsma, F. J., Jr & Civelli, O. Structures that delineate orphanin FQ and dynorphin A pharmacological selectivities. J. Biol. Chem. 273, 1490–1495 (1998).

    Article  CAS  PubMed  Google Scholar 

  202. Guerrini, R. et al. Further studies on nociceptin-related peptides: discovery of a new chemical template with antagonist activity on the nociceptin receptor. J. Med. Chem. 43, 2805–2813 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Guerrini, R. et al. Structure–activity studies of the Phe4 residue of nociceptin(1–13)-NH2: identification of highly potent agonists of the nociceptin/orphanin FQ receptor. J. Med. Chem. 44, 3956–3964 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Carra, G. et al. [(pF)Phe4, Arg14, Lys15]N/OFQ-NH2 (UFP-102), a highly potent and selective agonist of the nociceptin/orphanin FQ receptor. J. Pharmacol. Exp. Ther. 312, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Kitayama, M. et al. Pharmacological profile of the cyclic nociceptin/orphanin FQ analogues c[Cys10,14]N/OFQ(1–14)NH2 and c[Nphe1, Cys10,14]N/OFQ(1–14)NH2 . Naunyn Schmiedebergs Arch. Pharmacol. 368, 528–537 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Kitayama, M. et al. In vitro pharmacological characterisation of a novel cyclic nociceptin/orphanin FQ analogue c[Cys7,10]N/OFQ(1–13)NH2 . Naunyn Schmiedebergs Arch. Pharmacol. 375, 369–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Malinowska, B., Kozlowska, H., Berger, H. & Schlicker, E. Acetyl-RYYRIK-NH2 is a highly efficacious OP4 receptor agonist in the cardiovascular system of anesthetized rats. Peptides 21, 1875–1880 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. Kapusta, D. R. et al. Pharmacodynamic characterization of ZP120 (Ac-RYYRWKKKKKKK-NH2), a novel, functionally selective nociceptin/orphanin FQ peptide receptor partial agonist with sodium-potassium-sparing aquaretic activity. J. Pharmacol. Exp. Ther. 314, 652–660 (2005). Describes an interesting approach to peptide protection and a new aquaretic molecule that is currently in clinical evaluation for heart failure.

    Article  CAS  PubMed  Google Scholar 

  209. Judd, A. K. et al. Structure–activity studies on high affinity NOP-active hexapeptides. J. Pept. Res. 64, 87–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  210. Khroyan, T. V. et al. Anti-nociceptive and anti-allodynic effects of a high affinity NOP hexapeptide [Ac-RY(3-Cl)YRWR-NH2] (Syn 1020) in rodents. Eur. J. Pharmacol. 560, 29–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Economidou, D. et al. Effect of novel NOP receptor ligands on food intake in rats. Peptides 27, 775–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Seki, T. et al. Pharmacological properties of TRK-820 on cloned μ-, δ- and κ-opioid receptors and nociceptin receptor. Eur. J. Pharmacol. 376, 159–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Mizoguchi, H. et al. Blockade of μ-opioid receptor-mediated G-protein activation and antinociception by TRK-820 in mice. Eur. J. Pharmacol. 461, 35–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Endoh, T. et al. TRK-820, a selective κ-opioid agonist, produces potent antinociception in cynomolgus monkeys. Jpn. J. Pharmacol. 85, 282–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Wakasa, Y. et al. Inhibitory effects of TRK-820 on systemic skin scratching induced by morphine in rhesus monkeys. Life Sci. 75, 2947–2957 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Bloms-Funke, P., Gillen, C., Schuettler, A. J. & Wnendt, S. Agonistic effects of the opioid buprenorphine on the nociceptin/OFQ receptor. Peptides 21, 1141–1146 (2000).

    Article  CAS  PubMed  Google Scholar 

  217. Yamamoto, T., Shono, K. & Tanabe, S. Buprenorphine activates μ and opioid receptor like-1 receptors simultaneously, but the analgesic effect is mainly mediated by μ receptor activation in the rat formalin test. J. Pharmacol. Exp. Ther. 318, 206–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Noda, Y. et al. Loss of antinociception induced by naloxone benzoylhydrazone in nociceptin receptor-knockout mice. J. Biol. Chem. 273, 18047–18051 (1998).

    Article  CAS  PubMed  Google Scholar 

  219. Berzetei-Gurske, I. P. et al. The in vitro pharmacological characterization of naloxone benzoylhydrazone. Eur. J. Pharmacol. 277, 257–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  220. Yamada, H., Nakamoto, H., Suzuki, Y., Ito, T. & Aisaka, K. Pharmacological profiles of a novel opioid receptor-like1 (ORL1) receptor antagonist, JTC-801. Br. J. Pharmacol. 135, 323–332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Muratani, T. et al. Characterization of nociceptin/orphanin FQ-induced pain responses by the novel receptor antagonist N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride. J. Pharmacol. Exp. Ther. 303, 424–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Bigoni, R. et al. In vitro characterization of J-113397, a non-peptide nociceptin/orphanin FQ receptor antagonist. Naunyn Schmiedebergs Arch. Pharmacol. 361, 565–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  223. Hashiba, E. et al. Characterisation and comparison of novel ligands for the nociceptin/orphanin FQ receptor. Naunyn Schmiedebergs Arch. Pharmacol. 363, 28–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Trapella, C. et al. Identification of an achiral analogue of J-113397 as potent nociceptin/orphanin FQ receptor antagonist. Bioorg. Med. Chem. 14, 692–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Rizzi, A. et al. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vivo studies. J. Pharmacol. Exp. Ther. 321, 968–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Ho, G. D. et al. Synthesis and structure–activity relationships of 4-hydroxy-4-phenylpiperidines as nociceptin receptor ligands: part 1. Bioorg. Med. Chem. Lett. 17, 3023–3027 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Ho, G. D. et al. Synthesis and structure–activity relationships of 4-hydroxy-4-phenylpiperidines as nociceptin receptor ligands: part 2. Bioorg. Med. Chem. Lett. 17, 3028–3033 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Thomsen, C. & Hohlweg, R. (8-Naphthalen-1-ylmethyl-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl)-acetic acid methyl ester (NNC 63-0532) is a novel potent nociceptin receptor agonist. Br. J. Pharmacol. 131, 903–908 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bignan, G. C., Connolly, P. J. & Middleton, S. A. Recent advances towards the discovery of ORL-1 receptor agonists and antagonists. Expert Opin. Ther. Pat. 15, 357–388 (2005).

    Article  CAS  Google Scholar 

  230. Caldwell, J. P., Matasi, J. J., Zhang, H., Fawzi, A. & Tulshian, D. B. Synthesis and structure–activity relationships of N-substituted spiropiperidines as nociceptin receptor ligands. Bioorg. Med. Chem. Lett. 17, 2281–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Ito, F. 2-Benzimidazolylamine ORL1 receptor agonists. EP01069124 (A1) (2001).

  232. Ito, F., Koike, H., Masaki, S., Yamagishi, T. & Ando, K. Spiropiperidine derivatives as ligands for ORL-1 receptors. WO03000677 (2003).

  233. Ito, F., Koike, H. & Morita, A. N-substituted spiropiperidine compounds as ligands for ORL-1 receptor. WO03064425 (2003).

  234. Hirota, M. et al. Alpha aryl or heteroaryl methyl beta piperidino propanamide compounds as ORL1-receptor antagonist. WO2005092858 (2005).

Download references

Acknowledgements

I am indebted to my collaborators G. Calo and R. Guerrini (University of Ferrara, Italy) for advice in the construction of this Review and for critically reading several versions. I would also like to thank R. Ciccocioppo, Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Italy, for advice on the reward/abuse section and J. McDonald for help in manuscript preparation. Over the years work on N/OFQ in my laboratory has been funded by the British Journal of Anaesthesia and the Royal College of Anaesthetists, The Wellcome Trust and Pfizer (Sandwich, UK). A PubMed search for “nociceptin” or “orphanin” yields 1,300 hits, so I apologize to all those authors whose work I could not cite due to limitations of space.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (table)

Opioid receptor classification (IUPHAR), transduction and basic pharmacology. (PDF 166 kb)

Related links

Related links

FURTHER INFORMATION

Acologix

Brane Discovery

IUPHAR Receptor Database

Neighbourhood.gov.uk

Samyang

The British Heart Foundation

Zealand Pharma

Glossary

Hyperalgesia

An increase in pain perception above the normal response to a stimulus.

Deorphanized

The identification of an endogenous ligand for a receptor whose structure makes it a member of a receptor family, but for which no ligand has yet been identified (that is, an orphan receptor).

Structure–activity relationship

(SAR). Correlations that are constructed between the features of chemical structure in a set of candidate compounds and parameters of biological activity, such as potency, selectivity and toxicity.

Superagonist

A drug that can interact with a receptor and initiate a physiological or a pharmacological response that is characteristic of that receptor but with particularly high potency and/or efficacy.

Privileged structure

A single molecular framework that is able to provide ligands for diverse receptors.

Conditioned place preference (CPP) test

An experimental animal is presented with a positive stimulus (in this case a drug of abuse) in conjunction with a specific cue. The animal develops an association between the place and preference for the positive stimulus. The amount of time spent in the place previously associated with the stimulus can be used as an index of the rewarding properties of the original stimulus.

Marchigian Sardinian alcohol-preferring (mSP) rat

A genetically selected strain of rat with a natural preference for ethanol. This is used as a model of human alcoholism.

GTPγ [35S] binding

An in vitro assay used to monitor G-protein coupled receptor-mediated guanine nucleotide exchange at G proteins.

Sympatholytic

An agent that decreases the activity of the sympathetic nervous system, for example, guanethidine.

Chronotropic effect

In the context of the cardiovascular system, this refers to heart rate. Opioids slow heart rate and thus have a negative chronotropic effect.

Hyponatraemia

Low plasma sodium concentration.

Capsaicin-sensitive primary afferents

These are primary nociceptive afferent fibres of the Aδ and C-fibre type. They express TRPV1 receptors and hence are capsaicin sensitive. As TRPV1 receptors are also activated by heat and low pH, these channels convey a polymodal activation profile to Aδ and C-fibres.

Detrusor hyperreflexia

Increased contractility of the detrusor muscle of the bladder (idiopathic), often as a result of neurological disease (neurogenic), leading to urinary incontinence.

Afferent fibre switching

Afferent signals from the bladder are conveyed by Aδ and C-fibres, with the latter being 'silent'. In spinal-cord injury, C-fibre activity is unmasked, leading to fibre switching.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, D. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7, 694–710 (2008). https://doi.org/10.1038/nrd2572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing