Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aquaporins: important but elusive drug targets

Key Points

  • Aquaporins (AQPs) are water channel proteins that are expressed in the plasma membranes of cells. They are involved in many physiological functions, including renal water balance, epithelial fluid secretion, cell migration, brain oedema and metabolism in adipocytes.

  • Aquaporinopathies include nephrogenic diabetes insipidus (which is caused by a loss-of-function mutation in AQP2) and neuromyelitis optica (which is caused by the development of AQP4-targeted autoantibodies).

  • Modulators of AQP function are predicted to have broad clinical indications in oedema, cancer, obesity, brain injury, glaucoma, epilepsy and inflammation.

  • The identification of useful small-molecule AQP inhibitors has been slow, in part because of technical challenges in assaying the water-transporting function of AQPs and challenges associated with targeting the compact, pore-containing AQP molecule.

Abstract

The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of aquaporins.
Figure 2: Tissue distribution of mammalian aquaporins.
Figure 3: Major physiological functions of aquaporins.
Figure 4: Assays of aquaporin-mediated water transport.
Figure 5: Putative aquaporin-targeted small-molecule modulators.
Figure 6: AQP4-targeted therapies for neuromyelitis optica and nephrogenic diabetes insipidus.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Fu, D. & Lu, M. The structural basis of water permeation and proton exclusion in aquaporins. Mol. Membr. Biol. 24, 366–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Gonen, T. & Walz, T. The structure of aquaporins. Q. Rev. Biophys. 39, 361–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Crane, J. M. & Verkman, A. S. Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J. Cell Sci. 122, 813–821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rash, J. E., Yasumura, T., Hudson, C. S., Agre, P. & Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl Acad. Sci. USA 95, 11981–11986 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, A. J., Jin, B. J., Ratelade, J. & Verkman, A. S. Aggregation state determines the localization and function of M1– and M23–aquaporin-4 in astrocytes. J. Cell. Biol. 204, 559–573 (2014). This study shows the dual functions of AQP4 isoforms and arrays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Beitz, E., Wu, B., Holm, L. M., Schultz, J. E. & Zeuthen, T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl Acad. Sci. USA 103, 269–274 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho, J. D. et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc. Natl Acad. Sci. USA 106, 7437–7442 (2009). This paper describes the high-resolution crystal structure of AQP4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Groot, B. L. & Grubmuller, H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr. Opin. Struct. Biol. 15, 176–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Burykin, A. & Warshel, A. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85, 3696–3706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato, M., Pisliakov, A. V. & Warshel, A. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations. Proteins 64, 829–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H., Wu, Y. & Voth, G. A. Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel. Biophys. J. 90, L73–L75 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. B. & Chen, L. Y. In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid. Biophys. Chem. 171, 24–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Janosi, L. & Ceccarelli, M. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations. PLoS ONE 8, e59897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tornroth-Horsefield, S., Hedfalk, K., Fischer, G., Lindkvist-Petersson, K. & Neutze, R. Structural insights into eukaryotic aquaporin regulation. FEBS Lett. 584, 2580–2588 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Fischer, G. et al. Crystal structure of a yeast aquaporin at 1.15 Å reveals a novel gating mechanism. PLoS Biol. 7, e1000130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozu, M., Dorr, R. A., Gutierrez, F., Politi, M. T. & Toriano, R. Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism. Biophys. J. 104, 85–95 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soveral, G., Macey, R. I. & Moura, T. F. Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule. Biol. Cell 89, 275–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Soveral, G., Madeira, A., Loureiro-Dias, M. C. & Moura, T. F. Membrane tension regulates water transport in yeast. Biochim. Biophys. Acta 1778, 2573–2579 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hub, J. S., Grubmuller, H. & de Groot, B. L. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb. Exp. Pharmacol. 2009, 57–76 (2009).

    Article  Google Scholar 

  24. Musa-Aziz, R., Chen, L. M., Pelletier, M. F. & Boron, W. F. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl Acad. Sci. USA 106, 5406–5411 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holm, L. M. et al. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch. 450, 415–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Herrera, M., Hong, N. J. & Garvin, J. L. Aquaporin-1 transports NO across cell membranes. Hypertension 48, 157–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. & Tajkhorshid, E. Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78, 661–670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsukaguchi, H., Weremowicz, S., Morton, C. C. & Hediger, M. A. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol. 277, F685–F696 (1999).

    CAS  PubMed  Google Scholar 

  29. Hara-Chikuma, M. et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J. Exp. Med. 209, 1743–1752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yool, A. J. & Weinstein, A. M. New roles for old holes: ion channel function in aquaporin-1. News Physiol. Sci. 17, 68–72 (2002).

    CAS  PubMed  Google Scholar 

  32. Ma, T. et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273, 4296–4299 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Schnermann, J. et al. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl Acad. Sci. USA 95, 9660–9664 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou, C. L. et al. Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J. Clin. Invest. 103, 491–496 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pallone, T. L., Edwards, A., Ma, T., Silldorff, E. P. & Verkman, A. S. Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta. J. Clin. Invest. 105, 215–222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki, S. Aquaporin 2: from its discovery to molecular structure and medical implications. Mol. Aspects Med. 33, 535–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, T. et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J. Clin. Invest. 100, 957–962 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, B., Gillespie, A., Carlson, E. J., Epstein, C. J. & Verkman, A. S. Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J. Biol. Chem. 276, 2775–2779 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, B., Zhao, D. & Verkman, A. S. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J. 23, 503–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morishita, Y. et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 25, 7770–7779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, T. et al. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 274, 20071–20074 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Song, Y. & Verkman, A. S. Aquaporin-5 dependent fluid secretion in airway submucosal glands. J. Biol. Chem. 276, 41288–41292 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, D., Vetrivel, L. & Verkman, A. S. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J. Gen. Physiol. 119, 561–569 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oshio, K., Watanabe, H., Song, Y., Verkman, A. S. & Manley, G. T. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J. 19, 76–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen, S. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papadopoulos, M. C. & Verkman, A. S. Potential utility of aquaporin modulators for therapy of brain disorders. Prog. Brain Res. 170, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med. 6, 159–163 (2000). This study provides the first direct evidence that AQP4 has a role in the development of brain oedema.

    Article  CAS  PubMed  Google Scholar 

  49. Haj-Yasein, N. N. et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl Acad. Sci. USA 108, 17815–17820 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem. 280, 13906–13912 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Katada, R. et al. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J. 28, 705–714 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Papadopoulos, M. C., Manley, G. T., Krishna, S. & Verkman, A. S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 18, 1291–1293 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Bloch, O., Papadopoulos, M. C., Manley, G. T. & Verkman, A. S. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J. Neurochem. 95, 254–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Tait, M. J., Saadoun, S., Bell, B. A., Verkman, A. S. & Papadopoulos, M. C. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience 167, 60–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid-β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bloch, O., Auguste, K. I., Manley, G. T. & Verkman, A. S. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J. Cereb. Blood Flow Metab. 26, 1527–1537 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Saadoun, S., Bell, B. A., Verkman, A. S. & Papadopoulos, M. C. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain 131, 1087–1098 (2008).

    Article  PubMed  Google Scholar 

  58. Kimura, A. et al. Protective role of aquaporin-4 water channels after contusion spinal cord injury. Ann. Neurol. 67, 794–801 (2010).

    PubMed  Google Scholar 

  59. Binder, D. K. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53, 631–636 (2006).

    Article  PubMed  Google Scholar 

  60. Padmawar, P., Yao, X., Bloch, O., Manley, G. T. & Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nature Methods 2, 825–827 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13615–13620 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, B. J., Zhang, H., Binder, D. K. & Verkman, A. S. Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J. Gen. Physiol. 141, 119–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saadoun, S. et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J. Cell Sci. 118, 5691–5698 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Auguste, K. I. et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J. 21, 108–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Oshio, K., Watanabe, H., Yan, D., Verkman, A. S. & Manley, G. T. Impaired pain sensation in mice lacking aquaporin-1 water channels. Biochem. Biophys. Res. Commun. 341, 1022–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Oshio, K. et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127, 685–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Shields, S. D., Mazario, J., Skinner, K. & Basbaum, A. I. Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain 131, 8–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, H. & Verkman, A. S. Aquaporin-1 tunes pain perception by interaction with Nav1.8 Na+ channels in dorsal root ganglion neurons. J. Biol. Chem. 285, 5896–5906 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Endo, M., Jain, R. K., Witwer, B. & Brown, D. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc. Res. 58, 89–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Verkman, A. S., Hara-Chikuma, M. & Papadopoulos, M. C. Aquaporins — new players in cancer biology. J. Mol. Med. 86, 523–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A. & Krishna, S. Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer 87, 621–623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S. & Bell, B. A. Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72, 262–265 (2002). This is the first demonstration that AQP expression is increased in human tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Warth, A., Kroger, S. & Wolburg, H. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107, 311–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Warth, A., Mittelbronn, M., Hulper, P., Erdlenbruch, B. & Wolburg, H. Expression of the water channel protein aquaporin-9 in malignant brain tumors. Appl. Immunohistochem Mol. Morphol. 15, 193–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M. & Verkman, A. S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792 (2005). This study demonstrates that AQPs facilitate cell migration.

    Article  CAS  PubMed  Google Scholar 

  76. Esteva-Font, C., Jin, B. J. & Verkman, A. S. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. http://dx.doi.org/10.1096/fj.13-245621 (2013).

  77. Hu, J. & Verkman, A. S. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J. 20, 1892–1894 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Papadopoulos, M. C., Saadoun, S. & Verkman, A. S. Aquaporins and cell migration. Pflugers Arch. 456, 693–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Hara-Chikuma, M. & Verkman, A. S. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell. Biol. 28, 326–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Z. et al. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J. Pathol. 221, 210–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Jung, H. J., Park, J. Y., Jeon, H. S. & Kwon, T. H. Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS ONE 6, e28492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Giusto, G. et al. Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J. Cell Biochem. 113, 3721–3729 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, Y. H. et al. Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumour Biol. 34, 1743–1751 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M. & Verkman, A. S. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J. Biol. Chem. 277, 17147–17153 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Hara, M. & Verkman, A. S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl Acad. Sci. USA 100, 7360–7365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dumas, M. et al. Hydrating skin by stimulating biosynthesis of aquaporins. J. Drugs Dermatol. 6, s20–s24 (2007).

    PubMed  Google Scholar 

  87. Verkman, A. S. A cautionary note on cosmetics containing ingredients that increase aquaporin-3 expression. Exp. Dermatol. 17, 871–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Levin, M. H. & Verkman, A. S. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 47, 4365–4372 (2006).

    Article  PubMed  Google Scholar 

  89. Hara-Chikuma, M. & Verkman, A. S. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J. Mol. Med. 86, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Chepelinsky, A. B. Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb. Exp. Pharmacol. 2009, 265–297 (2009).

    Article  Google Scholar 

  91. Zhu, N. et al. Defective macrophage function in aquaporin-3 deficiency. FASEB J. 25, 4233–4239 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Hara-Chikuma, M. et al. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J. Biol. Chem. 280, 15493–15496 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Hibuse, T. et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc. Natl Acad. Sci. USA 102, 10993–10998 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marrades, M. P., Milagro, F. I., Martinez, J. A. & Moreno-Aliaga, M. J. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem. Biophys. Res. Commun. 339, 785–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Maeda, N., Hibuse, T. & Funahashi, T. Role of aquaporin-7 and aquaporin-9 in glycerol metabolism; involvement in obesity. Handb. Exp. Pharmacol. 2009, 233–249 (2009).

    Article  Google Scholar 

  96. Jelen, S. et al. Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1279–G1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Jelen, S. et al. Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J. Biol. Chem. 286, 44319–44325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berry, V., Francis, P., Kaushal, S., Moore, A. & Bhattacharya, S. Missense mutations in MIP underlie autosomal dominant 'polymorphic' and lamellar cataracts linked to 12q. Nature Genet. 25, 15–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, J., Xu, J., Gu, S., Nicholson, B. J. & Jiang, J. X. Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J. Cell Sci. 124, 198–206 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. King, L. S., Choi, M., Fernandez, P. C., Cartron, J. P. & Agre, P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med. 345, 175–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994). This paper shows that mutations in human AQP2 cause defective urinary concentration in NDI.

    Article  CAS  PubMed  Google Scholar 

  102. Roudier, N. et al. AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J. Biol. Chem. 277, 45854–45859 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Goubau, C. et al. Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect. Genet. Med. 15, 55–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Blaydon, D. C. et al. Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am. J. Hum. Genet. 93, 330–335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cao, X. et al. Mutation in AQP5, encoding aquaporin 5, causes palmoplantar keratoderma Bothnia type. J. Invest. Dermatol. 134, 284–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, B., Jiang, Y., Yang, Y., Peng, F. & Hu, X. Correlation between serum thyroxine and complements in patients with multiple sclerosis and neuromyelitis optica. Neuro Endocrinol. Lett. 29, 256–260 (2008).

    PubMed  Google Scholar 

  107. Edelman, J. L. & Miller, S. S. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 32, 3033–3040 (1991).

    CAS  PubMed  Google Scholar 

  108. Farinas, J., Kneen, M., Moore, M. & Verkman, A. S. Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J. Gen. Physiol. 110, 283–296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Farinas, J. & Verkman, A. S. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophys. J. 71, 3511–3522 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Farinas, J., Simanek, V. & Verkman, A. S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys. J. 68, 1613–1620 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Solenov, E., Watanabe, H., Manley, G. T. & Verkman, A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell Physiol. 286, C426–C432 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Galietta, L. J., Haggie, P. M. & Verkman, A. S. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Baumgart, F., Rossi, A. & Verkman, A. S. Light inactivation of water transport and protein-protein interactions of aquaporin-Killer Red chimeras. J. Gen. Physiol. 139, 83–91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Esteva-Font, C., Phuan, P. W., Anderson, M. O. & Verkman, A. S. A small molecule screen identifies selective inhibitors of urea transporter UT-A. Chem. Biol. 20, 1235–1244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Levin, M. H., de la Fuente, R. & Verkman, A. S. Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB J. 21, 551–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Rossi, A., Ratelade, J., Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia 60, 2027–2039 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang, B., van Hoek, A. N. & Verkman, A. S. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry 36, 7625–7632 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, R. B., Logee, K. A. & Verkman, A. S. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J. Biol. Chem. 265, 15375–15378 (1990).

    CAS  PubMed  Google Scholar 

  119. Zeuthen, T., Zeuthen, E. & Macaulay, N. Water transport by GLUT2 expressed in Xenopus laevis oocytes. J. Physiol. 579, 345–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Macey, R. I. & Farmer, R. E. Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta 211, 104–106 (1970).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, R., van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry 32, 2938–2941 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 (1993).

    CAS  PubMed  Google Scholar 

  124. Hasegawa, H., Ma, T., Skach, W., Matthay, M. A. & Verkman, A. S. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J. Biol. Chem. 269, 5497–5500 (1994).

    CAS  PubMed  Google Scholar 

  125. Niemietz, C. M. & Tyerman, S. D. New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett. 531, 443–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Martins, A. P. et al. Aquaporin inhibition by gold(III) compounds: new insights. ChemMedChem 8, 1086–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Martins, A. P. et al. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound. PLoS ONE 7, e37435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bertrand, B. & Casini, A. A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans. 43, 4209–4219 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Nagy, E. M., Ronconi, L., Nardon, C. & Fregona, D. Noble metal-dithiocarbamates precious allies in the fight against cancer. Mini Rev. Med. Chem. 12, 1216–1229 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Bergamo, A. & Sava, G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 40, 7817–7823 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Brooks, H. L., Regan, J. W. & Yool, A. J. Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Mol. Pharmacol. 57, 1021–1026 (2000).

    CAS  PubMed  Google Scholar 

  132. Detmers, F. J. et al. Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action. J. Biol. Chem. 281, 14207–14214 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Ma, B. et al. Effects of acetazolamide and anordiol on osmotic water permeability in AQP1-cRNA injected Xenopus oocyte. Acta Pharmacol. Sin. 25, 90–97 (2004).

    PubMed  Google Scholar 

  134. Gao, J. et al. Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1. Anal. Biochem. 350, 165–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Huber, V. J., Tsujita, M., Yamazaki, M., Sakimura, K. & Nakada, T. Identification of arylsulfonamides as aquaporin 4 inhibitors. Bioorg. Med. Chem. Lett. 17, 1270–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Huber, V. J., Tsujita, M., Kwee, I. L. & Nakada, T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg. Med. Chem. 17, 418–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Migliati, E. et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol. Pharmacol. 76, 105–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yool, A. J. et al. AqF026 is a pharmacologic agonist of the water channel aquaporin-1. J. Am. Soc. Nephrol. 24, 1045–1052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ozu, M., Dorr, R. A., Teresa Politi, M., Parisi, M. & Toriano, R. Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients. Eur. Biophys. J. 40, 737–746 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Hinson, S. R. et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl Acad. Sci. USA 109, 1245–1250 (2012).

    Article  PubMed  Google Scholar 

  141. Nicchia, G. P. et al. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57, 1363–1373 (2009).

    Article  PubMed  Google Scholar 

  142. Seeliger, D. et al. Discovery of novel human aquaporin-1 blockers. ACS Chem. Biol. 8, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Irwin, J. J. & Shoichet, B. K. ZINC — a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mola, M. G., Nicchia, G. P., Svelto, M., Spray, D. C. & Frigeri, A. Automated cell-based assay for screening of aquaporin inhibitors. Anal. Chem. 81, 8219–8229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wacker, S. J. et al. The identification of novel, high affinity AQP9 inhibitors in an intracellular binding site. Mol. Membr. Biol. 30, 246–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Baum, B. J. et al. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim. Biophys. Acta 1758, 1071–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Gao, R. et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther. 18, 38–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Baum, B. J. et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc. Natl Acad. Sci. USA 109, 19403–19407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005). This is the first report showing that AQP4 is the target of autoantibodies produced in NMO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Papadopoulos, M. C. & Verkman, A. S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11, 535–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Palace, J., Leite, M. I. & Jacob, A. A practical guide to the treatment of neuromyelitis optica. Pract. Neurol. 12, 209–214 (2012).

    Article  PubMed  Google Scholar 

  156. Tradtrantip, L. et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann. Neurol. 71, 314–322 (2012). This paper describes a monoclonal antibody therapy for NMO, involving a mutated, non-pathogenic blocking antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tradtrantip, L. et al. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. 26, 2197–2208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tradtrantip, L., Ratelade, J., Zhang, H. & Verkman, A. S. Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G into therapeutic antibody. Ann. Neurol. 73, 77–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Tradtrantip, L., Asavapanumas, N. & Verkman, A. S. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol. Pharmacol. 83, 1268–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Phuan, P. W., Ratelade, J., Rossi, A., Tradtrantip, L. & Verkman, A. S. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J. Biol. Chem. 287, 13829–13839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kieseier, B. C. et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol. 70, 390–393 (2013).

    Article  PubMed  Google Scholar 

  163. Araki, M. et al. Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod. Rheumatol 23, 827–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Bichet, D. G. Hereditary polyuric disorders: new concepts and differential diagnosis. Semin. Nephrol. 26, 224–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Wesche, D., Deen, P. M. & Knoers, N. V. Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr. Nephrol. 27, 2183–2204 (2012).

    Article  PubMed  Google Scholar 

  166. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Olesen, E. T., Rutzler, M. R., Moeller, H. B., Praetorius, H. A. & Fenton, R. A. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 108, 12949–12954 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tamarappoo, B. K. & Verkman, A. S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest. 101, 2257–2267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Soupene, E., King, N., Lee, H. & Kustu, S. Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J. Bacteriol. 184, 4304–4307 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Maurel, C., Reizer, J., Schroeder, J. I., Chrispeels, M. J. & Saier, M. H. Jr. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J. Biol. Chem. 269, 11869–11872 (1994).

    CAS  PubMed  Google Scholar 

  171. Kun, J. F. & de Carvalho, E. G. Novel therapeutic targets in Plasmodium falciparum: aquaglyceroporins. Expert Opin. Ther. Targets 13, 385–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Miranda, K. et al. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol. Microbiol. 76, 1358–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, Z. H. et al. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J. Biol. Chem. 286, 43959–43971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bassarak, B., Uzcategui, N. L., Schonfeld, C. & Duszenko, M. Functional characterization of three aquaglyceroporins from Trypanosoma brucei in osmoregulation and glycerol transport. Cell Physiol. Biochem. 27, 411–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Castro-Borges, W. et al. Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J. Proteom. 74, 1519–1533 (2011).

    Article  CAS  Google Scholar 

  176. Pavlovic-Djuranovic, S., Kun, J. F., Schultz, J. E. & Beitz, E. Dihydroxyacetone and methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite proliferation. Biochim. Biophys. Acta 1758, 1012–1017 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Liu, Y. et al. Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc. Natl Acad. Sci. USA 104, 12560–12564 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lindahl, E. & Sansom, M. S. Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol. 18, 425–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Muller, E. M., Hub, J. S., Grubmuller, H. & de Groot, B. L. Is TEA an inhibitor for human aquaporin-1? Pflugers Arch. 456, 663–669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Roudier, N., Verbavatz, J. M., Maurel, C., Ripoche, P. & Tacnet, F. Evidence for the presence of aquaporin-3 in human red blood cells. J. Biol. Chem. 273, 8407–8412 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Thiagarajah, J. R., Zhao, D. & Verkman, A. S. Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut 56, 1529–1535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, J., Patil, R. V. & Verkman, A. S. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest. Ophthalmol. Vis. Sci. 43, 573–579 (2002).

    PubMed  Google Scholar 

  183. Moore, M., Ma, T., Yang, B. & Verkman, A. S. Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5. Exp. Eye Res. 70, 557–562 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Nielsen, S., King, L. S., Christensen, B. M. & Agre, P. Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am. J. Physiol. 273, C1549–1561 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Saadoun, S. et al. Neuromyelitis optica IgG causes placental inflammation and fetal death. J. Immunol. 191, 2999–3005 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Li, J. & Verkman, A. S. Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276, 31233–31237 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Yang, B. et al. Skeletal muscle function and water permeability in aquaporin-4 deficient mice. Am. J. Physiol. Cell Physiol. 278, C1108–C1115 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Song, Y., Sonawane, N. & Verkman, A. S. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J. Physiol. 541, 561–568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kwon, T. H. et al. Physiology and pathophysiology of renal aquaporins. Semin. Nephrol. 21, 231–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Yamamoto, T., Kuramoto, H. & Kadowaki, M. Downregulation in aquaporin 4 and aquaporin 8 expression of the colon associated with the induction of allergic diarrhea in a mouse model of food allergy. Life Sci. 81, 115–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Badaut, J. Aquaglyceroporin 9 in brain pathologies. Neuroscience 168, 1047–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Ishibashi, K., Morinaga, T., Kuwahara, M., Sasaki, S. & Imai, M. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim. Biophys. Acta 1576, 335–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Boone, M. & Deen, P. M. Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp. Physiol. 94, 186–190 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is funded by the US National Institutes of Health (A.S.V. and M.O.A.), the Guthy-Jackson Charitable Foundation (A.S.V. and M.C.P.) and the Cystic Fibrosis Foundation (A.S.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Verkman.

Ethics declarations

Competing interests

A.S.V. is a named co-inventor on several aquaporin (AQP)-related patents, including a patent on aquaporin monoclonal antibodies to treat neuromyelitis optica (NMO). Patent rights are assigned to the University of California, San Francisco (UCSF).

Related links

PowerPoint slides

Glossary

Aquaglyceroporin

A class of the aquaporins (AQP3, AQP7 and AQP9) that transport glycerol in addition to water.

Virtual screening

A computational technique that is used to identify small-molecule modulators of a drug target. This is typically conducted in a structure-based manner (using protein–ligand docking) or in a ligand-based manner (using similarity searching or through the use of pharmacophore models).

Molecular dynamics simulations

Computational methods that simulate the physical motion of atoms and molecules. When applied to biomolecules, the results are typically trajectories of the atoms of the protein, solvent, ions, bound ligands and so on, over timescales that range from nanoseconds to microseconds.

Grotthuss-type 'proton-wire' mechanism

A hypothesis for proton movement in bulk water, where a proton can 'hop' along a continuous line of water molecules in a hydrogen-bonded network, with the resultant reorientation of water molecules after the transfer has occurred.

Free-energy profiles

A term that is used to describe the estimated energetics of a molecule passing through the span of a channel protein; it is usually calculated by molecular dynamics simulations.

Salt transport-blocking diuretics

Drugs that inhibit the absorption of Na+, K+ and Clions in the kidney and therefore secondarily inhibit water absorption. For example, amiloride inhibits the epithelial sodium channel in the distal tubule, and furosemide inhibits the Na+/K+/2Cl symporter in the thick ascending limb of the loop of Henle.

Aquaretic response

The urinary elimination of water without electrolyte loss (as opposed to a diuretic response in which urinary elimination of water is secondary to the elimination of salt).

Astrocyte end-feet

Astrocyte processes that surround microvascular endothelial cells in the central nervous system.

Vasogenic oedema

Oedema in the central nervous system where water accumulates in extracellular spaces.

Cortical spreading depression

A wave of depolarization that spreads in the brain and is followed by the suppression of brain activity.

Glial scar

A scar in the central nervous system that is formed in response to damage and involves reactive astrocytes and microglia.

Density functional theory calculations

A computational method that uses quantum-mechanical theory to model the energy and chemical structure of molecules.

Infiltrating tumour cells

Tumour cells that spread into normal tissue such that there is no clear border between the tumour and the normal tissue.

Stratum corneum

The outermost layer of the epidermis that is composed of dead cells (that is, keratinocytes).

Lens fibres

Long, thin transparent cells that form the bulk of the lens, arranged in concentric layers.

Gap junction channels

Intercellular channels composed of connexin proteins that allow the passage of small molecules (typically <1 kDa) between cells.

Palmoplantar keratoderma

A disease that is characterized by abnormal thickening of the skin on the palms of hands and soles of feet.

Ussing chamber

An apparatus in which a cell layer separates two solution compartments; it is used to measure ion transport.

Stopped-flow measurements

Assays that are carried out using an apparatus in which two solutions are mixed together rapidly (in <1 millisecond) and have an optical read-out.

IC50 value

The concentration of a compound that produces 50% inhibition of a target function.

Parotiditis

Inflammation of the parotid salivary gland.

Therapeutic apheresis

The passage of blood through a filtering apparatus to remove or inactivate a pathogenic substance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkman, A., Anderson, M. & Papadopoulos, M. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13, 259–277 (2014). https://doi.org/10.1038/nrd4226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4226

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research