Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dual-specificity phosphatases as targets for antineoplastic agents

Key Points

  • Dual-specificity phosphatases (DSPases) are a sub-class of the more ubiquitous protein tyrosine phosphatases (PTPases) that are uniquely able to hydrolyse the phosphate ester bond on both a tyrosine residue and either a serine or threonine residue located on the same protein.

  • Cell-division cycle 25 (CDC25) DSPases are attractive targets for novel mechanism-based anticancer agents, as they have a crucial role in controlling cell-cycle progression and genetic instability.

  • Small-molecule inhibitors, many based on natural-product scaffolds, are becoming available that allow the reversible and graded regulation of this enzyme family. Such compounds will be valuable tools to probe the function of DSPases. Moreover, they could form the basis for a new class of therapeutic agents.

Abstract

Dual-specificity protein phosphatases are a subclass of protein tyrosine phosphatases that are uniquely able to hydrolyse the phosphate ester bond on both a tyrosine and a threonine or serine residue on the same protein. Dual-specificity phosphatases have a central role in the complex regulation of signalling pathways that are involved in cell stress responses, proliferation and death. Although this enzyme family is increasingly the target of drug discovery efforts in pharmaceutical companies, a summary of the salient developments in the biology and medicinal chemistry of dual-specificity phosphatases has been lacking. We hope that this comprehensive overview will stimulate further progress in the development of small-molecule inhibitors that could form the basis for a new class of target-directed therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian CDC25 phosphatases.
Figure 2: Spatial regulation of CDC25 phosphatases at the G2/M checkpoint.
Figure 3: CDC25 phosphatases promote mammalian cell-cycle progression.
Figure 4
Figure 5: Natural-product analogues.
Figure 6
Figure 7
Figure 8: Synthetic inhibitors.
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  2. Hunter, T. Signalling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tonks, N. K. & Neel, B. G. From form to function: signaling by protein tyrosine phosphatases. Cell 87, 365–368 (1996).

    CAS  PubMed  Google Scholar 

  4. Stone, R. L. & Dixon, J. E. Protein-tyrosine phosphatases. J. Biol. Chem. 269, 31323–31326 (1994).

    CAS  PubMed  Google Scholar 

  5. Zolnierowicz, S. & Bollen, M. Protein phosphorylation and protein phosphatases. EMBO J. 19, 483–488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Denu, J. M., Stuckey, J. A., Saper, M. A. & Dixon, J. E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996). A classic paper that describes the fundamental structures and enzymatic processes used by protein phosphatases.

    CAS  PubMed  Google Scholar 

  7. Egloff, M. P., Cohen, P. T., Reinemer, P. & Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254, 942–959 (1995).

    CAS  PubMed  Google Scholar 

  8. Zhang, Z. Y. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33, 1–52 (1998).

    PubMed  Google Scholar 

  9. Barford, D., Flint, A. J. & Tonks, N. K. Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404 (1994).

    CAS  PubMed  Google Scholar 

  10. Yuvaniyama, J., Denu, J. M., Dixon, J. E. & Saper, M. A. Crystal structure of the dual specificity protein phosphatase VHR. Science 272, 1328–1331 (1996).

    CAS  PubMed  Google Scholar 

  11. Todd, J. L., Tanner, K. G. & Denu, J. M. Extracellular regulated kinases (ERK)1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J. Biol. Chem. 274, 13271–13280 (1999).

    CAS  PubMed  Google Scholar 

  12. Gautier, J., Solomon, M. J., Booher, R. N., Bazan, J. F. & Kirschner, M. W. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67, 197–211 (1991).

    CAS  PubMed  Google Scholar 

  13. Kumagai, A. & Dunphy, W. G. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64, 903–914 (1991).

    CAS  PubMed  Google Scholar 

  14. Strausfeld, U. et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351, 242–245 (1991).

    CAS  PubMed  Google Scholar 

  15. Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    CAS  PubMed  Google Scholar 

  16. Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342, 39–45 (1989).

    CAS  PubMed  Google Scholar 

  17. Galaktionov, K. & Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194 (1991).

    CAS  PubMed  Google Scholar 

  18. Sadhu, K., Reed, S. I., Richardson, H. & Russell, P. Human homolog of fission yeast Cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl Acad. Sci. USA 87, 5139–5143 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagata, A., Igarashi, M., Jinno, S., Suto, K. & Okayama, H. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol. 3, 959–968 (1991).

    CAS  PubMed  Google Scholar 

  20. Jinno, S. et al. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wegener, S., Hampe, W., Herrmann, D. & Schaller, H. C. Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C. Eur. J. Cell Biol. 79, 810–815 (2000).

    CAS  PubMed  Google Scholar 

  22. Forrest, A. R. et al. Multiple splicing variants of cdc25B regulate G2/M progression. Biochem. Biophys. Res. Commun. 260, 510–515 (1999).

    CAS  PubMed  Google Scholar 

  23. Draetta, G. & Eckstein, J. Cdc25 protein phosphatases in cell proliferation. Biochim. Biophys. Acta 1332, M53–M63 (1997).

    CAS  PubMed  Google Scholar 

  24. Gottlin, E. B. et al. Kinetic analysis of the catalytic domain of human CDC25B. J. Biol. Chem. 271, 27445–27449 (1996).

    CAS  PubMed  Google Scholar 

  25. Chen, W., Wilborn, M. & Rudolph, J. Dual-specific Cdc25B phosphatase: in search of the catalytic acid. Biochemistry 39, 10781–10789 (2000).

    CAS  PubMed  Google Scholar 

  26. Fauman, E. B. et al. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93, 617–625 (1998). This paper reveals the first crystal structure of the CDC25A catalytic domain and indicates similarity with the bacterial sulphur-transfer protein, rhodanese.

    CAS  PubMed  Google Scholar 

  27. Xu, X. & Burke, S. P. Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25. J. Biol. Chem. 271, 5118–5124 (1996).

    CAS  PubMed  Google Scholar 

  28. Reynolds, R. A. et al. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J. Mol. Biol. 293, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  29. Coqueret, O., Berube, G. & Nepveu, A. The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase. EMBO J. 17, 4680–4694 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia, K. et al. Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A. Mol. Cell. Biol. 19, 4819–4824 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilborn, M., Free, S., Ban, A. & Rudolph, J. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition. Biochemistry 40, 14200–14206 (2001).

    CAS  PubMed  Google Scholar 

  32. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E. & Draetta, G. Phosphorylation and activation of human CDC25C by CDC2–cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53–63 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Strausfeld, U. et al. Activation of p34cdc2 protein kinase by microinjection of human CDC25C into mammalian cells. Requirement for prior phosphorylation of CDC25C by p34CDC2 on sites phosphorylated at mitosis. J. Biol. Chem. 269, 5989–6000 (1994).

    CAS  PubMed  Google Scholar 

  34. Baldin, V., Cans, C., Knibiehler, M. & Ducommun, B. Phosphorylation of human CDC25B phosphatase by CDK1–cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem. 272, 32731–32734 (1997).

    CAS  PubMed  Google Scholar 

  35. Cans, C., Ducommun, B. & Baldin, V. Proteasome-dependent degradation of human CDC25B phosphatase. Mol. Biol. Rep. 26, 53–57 (1999).

    CAS  PubMed  Google Scholar 

  36. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    CAS  PubMed  Google Scholar 

  37. Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).

    CAS  PubMed  Google Scholar 

  38. Bernardi, R., Liebermann, D. A. & Hoffman, B. Cdc25A stability is controlled by the ubiquitin–proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447–2454 (2000).

    CAS  PubMed  Google Scholar 

  39. Molinari, M., Mercurio, C., Dominguez, J., Goubin, F. & Draetta, G. F. Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep. 1, 71–79 (2000). References 37–39 demonstrate the rapid destruction of CDC25A by a proteasomal pathway, which is an important regulatory system for cell-cycle progression, DNA-damage recognition and terminal differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Davezac, N. et al. Regulation of CDC25B phosphatases subcellular localization. Oncogene 19, 2179–2185 (2000).

    CAS  PubMed  Google Scholar 

  41. Forrest, A. & Gabrielli, B. Cdc25B activity is regulated by 14-3-3. Oncogene 20, 4393–4401 (2001).

    CAS  PubMed  Google Scholar 

  42. Graves, P. R., Lovly, C. M., Uy, G. L. & Piwnica-Worms, H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20, 1839–1851 (2001).

    CAS  PubMed  Google Scholar 

  43. Mils, V. et al. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 19, 1257–1265 (2000).

    CAS  PubMed  Google Scholar 

  44. Furnari, B., Rhind, N. & Russell, P. CDC25 mitotic inducer targeted by CHK1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    CAS  PubMed  Google Scholar 

  45. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172–175 (1999).

    CAS  PubMed  Google Scholar 

  46. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997). The subcellular localization of CDC25 is altered in response to genetic damage, which physically separates CDC25 from potential substrates, and CDC25 phosphorylation and 14-3-3 binding cause this translocation.

    CAS  PubMed  Google Scholar 

  47. Conklin, D. S., Galaktionov, K. & Beach, D. 14-3-3 proteins associate with cdc25 phosphatases. Proc. Natl Acad. Sci. USA 92, 7892–7896 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Galaktionov, K., Jessus, C. & Beach, D. Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. 9, 1046–1058 (1995).

    CAS  PubMed  Google Scholar 

  49. Hoffmann, I., Draetta, G. & Karsenti, E. Activation of the phosphatase activity of human cdc25A by a cdk2–cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 13, 4302–4310 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, M. S. et al. CDC25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol. Biol. Cell 3, 73–84 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Millar, J. B., McGowan, C. H., Lenaers, G., Jones, R. & Russell, P. p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J. 10, 4301–4309 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Honda, R., Ohba, Y., Nagata, A., Okayama, H. & Yasuda, H. Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett. 318, 331–334 (1993).

    CAS  PubMed  Google Scholar 

  53. Gabrielli, B. G. et al. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J. Cell. Sci. 109 (Part 5), 1081–1093 (1996).

    CAS  PubMed  Google Scholar 

  54. Sebastian, B., Kakizuka, A. & Hunter, T. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc. Natl Acad. Sci. USA 90, 3521–3524 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vincent, I. et al. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105, 639–650 (2001).

    CAS  PubMed  Google Scholar 

  56. Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).

    CAS  PubMed  Google Scholar 

  57. Rhind, N., Furnari, B. & Russell, P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11, 504–511 (1997).

    CAS  PubMed  Google Scholar 

  58. Blasina, A. et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9, 1–10 (1999).

    CAS  PubMed  Google Scholar 

  59. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    CAS  PubMed  Google Scholar 

  60. Bulavin, D. V. et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107 (2001).

    CAS  PubMed  Google Scholar 

  61. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    CAS  PubMed  Google Scholar 

  62. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  63. Galaktionov, K. et al. CDC25 phosphatases as potential human oncogenes. Science 269, 1575–1577 (1995). CDC25A and CDC25B are shown to be oncogenic.

    CAS  PubMed  Google Scholar 

  64. Cangi, M. G. et al. Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. 106, 753–761 (2000). CDC25A is overexpressed in many human breast cancers, contributes to the biological behaviour of breast tumours and is a good target for the treatment of early-stage cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dixon, D., Moyana, T. & King, M. J. Elevated expression of the cdc25A protein phosphatase in colon cancer. Exp. Cell Res. 240, 236–43 (1998).

    CAS  PubMed  Google Scholar 

  66. Gasparotto, D. et al. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57, 2366–2368 (1997).

    CAS  PubMed  Google Scholar 

  67. Hernandez, S. et al. CDC25A and the splicing variant CDC25B2, but not CDC25B1, -B3 or -C, are over-expressed in aggressive human non-Hodgkin's lymphomas. Int. J. Cancer 89, 148–52 (2000).

    CAS  PubMed  Google Scholar 

  68. Hu, Y. C., Lam, K. Y., Law, S., Wong, J. & Srivastava, G. Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin. Cancer Res. 7, 3519–3525 (2001).

    CAS  PubMed  Google Scholar 

  69. Kudo, Y. et al. Overexpression of cyclin-dependent kinase-activating CDC25B phosphatase in human gastric carcinomas. Jpn. J. Cancer Res. 88, 947–952 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato, Y. et al. Expression of the cdc25B mRNA correlated with that of N-myc in neuroblastoma. Jpn. J. Clin. Oncol. 31, 428–431 (2001).

    CAS  PubMed  Google Scholar 

  71. Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. & Mao, L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c myc. Cancer Res. 58, 4082–5 (1998).

    CAS  PubMed  Google Scholar 

  72. Sandhu, C. et al. Reduction of Cdc25A contributes to cyclin E1–Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 19, 5314–5323 (2000).

    CAS  PubMed  Google Scholar 

  73. Vogt, A. et al. Spatial analysis of key signaling proteins by high-content solid-phase cytometry in Hep3B cells treated with an inhibitor of Cdc25 dual-specificity phosphatases. J. Biol. Chem. 276, 20544–20550 (2001).

    CAS  PubMed  Google Scholar 

  74. Kar, S. & Carr, B. I. Growth inhibition and protein tyrosine phosphorylation in MCF 7 breast cancer cells by a novel K vitamin. J. Cell. Physiol. 185, 386–393 (2000).

    CAS  PubMed  Google Scholar 

  75. Pumiglia, K. M. & Decker, S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA 94, 448–452 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stanciu, M. et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 12200–12206 (2000).

    CAS  PubMed  Google Scholar 

  77. Zou, X. et al. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21, 4818–4828 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, Z. Q., Liu, Z., Ngan, E. S. & Tsai, S. Y. Cdc25B functions as a novel coactivator for the steroid receptors. Mol. Cell. Biol. 21, 8056–8067 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Imoto, M. et al. Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by Streptomyces. I. Taxonomy, isolation, and characterization. J. Antibiot. (Tokyo) 46, 1342–1346 (1993).

    CAS  Google Scholar 

  80. Eckstein, J. W. Cdc25 as a potential target of anticancer agents. Invest. New Drugs 18, 149–156 (2000).

    CAS  PubMed  Google Scholar 

  81. Tanida, S., Hasegawa, T., Muroi, M. & Higashide, E. Dnacins, new antibiotics. I. Producing organism, fermentation, and antimicrobial activities. J. Antibiot. (Tokyo) 33, 1443–1448 (1980).

    CAS  Google Scholar 

  82. Horiguchi, T. et al. Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochem. Pharmacol. 48, 2139–2141 (1994).

    CAS  PubMed  Google Scholar 

  83. Gunasekera, S. P., McCarthy, P. J., KellyBorges, M., Lobkovsky, E. & Clardy, J. Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. J. Am. Chem. Soc. 118, 8759–8760 (1996).

    CAS  Google Scholar 

  84. Blanchard, J. L., Epstein, D. M., Boisclair, M. D., Rudolph, J. & Pal, K. Dysidiolide and related γ-hydroxy butenolide compounds as inhibitors of the protein tyrosine phosphatase, CDC25. Bioorg. Med. Chem. Lett. 9, 2537–2538 (1999).

    CAS  PubMed  Google Scholar 

  85. Takahashi, M. et al. Synthesis of the novel analogues of dysidiolide and their structure–activity relationship. Bioorg. Med. Chem. Lett. 10, 2571–2574 (2000).

    CAS  PubMed  Google Scholar 

  86. Hamaguchi, T., Sudo, T. & Osada, H. RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1 phase. FEBS Lett. 372, 54–58 (1995).

    CAS  PubMed  Google Scholar 

  87. Hamaguchi, T., Masuda, A., Morino, T. & Osada, H. Stevastelins, a novel group of immunosuppressants, inhibit dual-specificity protein phosphatases. Chem. Biol. 4, 279–286 (1997).

    CAS  PubMed  Google Scholar 

  88. Morino, T. et al. Structural determination of stevastelins, novel depsipeptides from Penicillium sp. J. Antibiot. (Tokyo) 49, 564–568 (1996).

    CAS  Google Scholar 

  89. Wright, A. E., McCarthy, P. J. & Schulte, G. K. Sulfircin — a new sesterterpene sulfate from a deep-water sponge of the genus Ircinia. J. Org. Chem. 54, 3472–3474 (1989).

    CAS  Google Scholar 

  90. Cebula, R. E., Blanchard, J. L., Boisclair, M. D., Pal, K. & Bockovich, N. J. Synthesis and phosphatase inhibitory activity of analogs of sulfircin. Bioorg. Med. Chem. Lett. 7, 2015–2020 (1997).

    CAS  Google Scholar 

  91. Nutter, L. M. et al. Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem. Pharmacol. 41, 1283–1292 (1991).

    CAS  PubMed  Google Scholar 

  92. Ham, S. W., Park, H. J. & Lim, D. H. Studies on menadione as an inhibitor of the cdc25 phosphatase. Bioorg. Chem. 25, 33–36 (1997).

    CAS  Google Scholar 

  93. Tamura, K. et al. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer Res. 60, 1317–1325 (2000).

    CAS  PubMed  Google Scholar 

  94. Otani, T. et al. New Cdc25B tyrosine phosphatase inhibitors, nocardiones A and B, produced by Nocardia sp. TP-A0248: taxonomy, fermentation, isolation, structural elucidation and biological properties. J. Antibiot. (Tokyo) 53, 337–344 (2000).

    CAS  Google Scholar 

  95. Loukaci, A. et al. Coscinosulfate, a CDC25 phosphatase inhibitor from the sponge Coscinoderma mathewsi. Bioorg. Med. Chem. 9, 3049–3054 (2001).

    CAS  PubMed  Google Scholar 

  96. Nishikawa, Y. et al. Growth inhibition of hepatoma cells induced by vitamin K and its analogs. J. Biol. Chem. 270, 28304–28310 (1995).

    CAS  PubMed  Google Scholar 

  97. Ham, S. W. et al. Naphthoquinone analogs as inactivators of cdc25 phosphatase. Bioorg. Med. Chem. Lett. 8, 2507–2510 (1998).

    CAS  PubMed  Google Scholar 

  98. Koufaki, M. et al. Alkyl and alkoxyethyl antineoplastic phospholipids. J. Med. Chem. 39, 2609–2614 (1996).

    CAS  PubMed  Google Scholar 

  99. Sodeoka, M., Sampe, R., Kagamizono, T. & Osada, H. Asymmetric synthesis of RK-682 and its analogs, and evaluation of their protein phosphatase inhibitory activities. Tetrahedron Lett. 37, 8775–8778 (1996).

    CAS  Google Scholar 

  100. Sodeoka, M. et al. Synthesis of a tetronic acid library focused on inhibitors of tyrosine and dual-specificity protein phosphatases and its evaluation regarding VHR and cdc25B inhibition. J. Med. Chem. 44, 3216–3222 (2001). This paper provides a comprehensive overview of the use of the natural-product scaffold RK-682 for the development of selective DSPase inhibitors.

    CAS  PubMed  Google Scholar 

  101. Boukouvalas, J., Cheng, Y. X. & Robichaud, J. Total synthesis of (+)-dysidiolide. J. Org. Chem. 63, 228–229 (1998).

    CAS  Google Scholar 

  102. Brohm, D. & Waldmann, H. Stereoselective synthesis of the core structure of the protein phosphatase inhibitor dysidiolide. Tetrahedron Lett. 39, 3995–3998 (1998).

    CAS  Google Scholar 

  103. Corey, E. J. & Roberts, B. E. Total synthesis of dysidiolide. J. Am. Chem. Soc. 119, 12425–12431 (1997).

    CAS  Google Scholar 

  104. Demeke, D. & Forsyth, C. J. Novel total synthesis of the anticancer natural product dysidiolide. Org. Lett. 2, 3177–3179 (2000).

    CAS  PubMed  Google Scholar 

  105. Jung, M. E. & Nishimura, N. Enantioselective formal total synthesis of (−)-dysidiolide. Org. Lett. 3, 2113–2115 (2001).

    CAS  PubMed  Google Scholar 

  106. Magnuson, S. R., Sepp-Lorenzino, L., Rosen, N. & Danishefsky, S. J. A concise total synthesis of dysidiolide through application of a dioxolenium-mediated Diels–Alder reaction. J. Am. Chem. Soc. 120, 1615–1616 (1998).

    CAS  Google Scholar 

  107. Miyaoka, H., Kajiwara, Y. & Yamada, Y. Synthesis of marine sesterterpenoid dysidiolide. Tetrahedron Lett. 41, 911–914 (2000).

    CAS  Google Scholar 

  108. Piers, E., Caille, S. & Chen, G. A formal total synthesis of the sesterterpenoid (+/−)-dysidiolide and approaches to the syntheses of (+/−)-6-epi-, (+/−)-15-epi-, and (+/−)-6,15-bis-epi-dysidiolide. Organic Lett. 2, 2483–2486 (2000).

    CAS  Google Scholar 

  109. Takahashi, M., Dodo, K., Hashimoto, Y. & Shirai, R. Concise asymmetric synthesis of dysidiolide. Tetrahedron Lett. 41, 2111–2114 (2000).

    CAS  Google Scholar 

  110. Brohm, D. et al. Natural products are biologically validated starting points in structural space for compound library development: solid-phase synthesis of dysidiolide-derived phosphatase inhibitors. Angew. Chem. Int. Edn Engl. 41, 307–311 (2001).

    Google Scholar 

  111. Peng, H., Zalkow, L. H., Abraham, R. T. & Powis, G. Novel CDC25A phosphatase inhibitors from pyrolysis of 3-α-azido-B-homo-6-oxa-4-cholesten-7-one on silica gel. J. Med. Chem. 41, 4677–4680 (1998).

    CAS  PubMed  Google Scholar 

  112. Peng, H. et al. Steroidal derived acids as inhibitors of human Cdc25A protein phosphatase. Bioorg. Med. Chem. 8, 299–306 (2000).

    CAS  PubMed  Google Scholar 

  113. Peng, H. et al. Syntheses and biological activities of a novel group of steroidal derived inhibitors for human Cdc25A protein phosphatase. J. Med. Chem. 44, 834–848 (2001).

    CAS  PubMed  Google Scholar 

  114. Wipf, P., Cunningham, A., Rice, R. L. & Lazo, J. S. Combinatorial synthesis and biological evaluation of library of small-molecule Ser/Thr-protein phosphatase inhibitors. Bioorg. Med. Chem. 5, 165–177 (1997).

    CAS  PubMed  Google Scholar 

  115. Rice, R. L. et al. A targeted library of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation. Biochemistry 36, 15965–15974 (1997).

    CAS  PubMed  Google Scholar 

  116. Tamura, K., Rice, R. L., Wipf, P. & Lazo, J. S. Dual G1 and G2/M phase inhibition by SC-ααδ9, a combinatorially derived Cdc25 phosphatase inhibitor. Oncogene 18, 6989–6996 (1999).

    CAS  PubMed  Google Scholar 

  117. Ducruet, A. P. et al. Identification of new Cdc25 dual specificity phosphatase inhibitors in a targeted small molecule array. Bioorg. Med. Chem. 8, 1451–1466 (2000).

    CAS  PubMed  Google Scholar 

  118. Wipf, P., Aslan, D. C., Southwick, E. C. & Lazo, J. S. Sulfonylated aminothiazoles as new small molecule inhibitors of protein phosphatases. Bioorg. Med. Chem. Lett. 11, 313–317 (2001).

    CAS  PubMed  Google Scholar 

  119. Bergnes, G. et al. Generation of an Ugi library of phosphate mimic-containing compounds and identification of novel dual specific phosphatase inhibitors. Bioorg. Med. Chem. Lett. 9, 2849–2854 (1999).

    CAS  PubMed  Google Scholar 

  120. Fritzen, E. L., Brightwell, A. S., Erickson, L. A. & Romero, D. L. The solid phase synthesis of tetrahydroisoquinolines having cdc25B inhibitory activity. Bioorg. Med. Chem. Lett. 10, 649–652 (2000).

    CAS  PubMed  Google Scholar 

  121. El-Subbagh, H. I., Abadi, A. H., Al-Khawad, I. E. & Al-Rashood, K. A. Synthesis and antitumor activity of some new substituted quinolin-4-one and 1,7-naphthyridin-4-one analogs. Archiv. der Pharmazie 332, 19–24 (1999).

    CAS  PubMed  Google Scholar 

  122. Lazo, J. S. et al. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44, 4042–4049 (2001).

    CAS  PubMed  Google Scholar 

  123. Lazo, J. S. et al. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol. Pharmacol. 61, 720–728 (2002). This paper identifies the most potent known CDC25 inhibitor and provides molecular modelling of the potential interactions of the ligand with the catalytic domain of CDC25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Wipf or John S. Lazo.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

gastric cancer

head-and-neck cancer

non-small-cell lung cancer

non Hodgkin's lymphoma

neuroblastoma

oesophageal squamous-cell carcinoma

LocusLink

ABL

androgen receptor

ASK1

BCR

CDC25A

CDC25B

CDC25C

CDK1

CDK2

CHK1

CHK2

cyclin A

cyclin B

cyclin E

glucocorticoid receptor

GST

oestrogen receptor

p38

progesterone receptor

PTP1B

RAF1

Rb

TP53

VHR

OMIM

Alzheimer's disease

Saccharomyces Genome Database

cdc25

FURTHER INFORMATION

National Cancer Institute

NCI/NIH Developmental Therapeutics Program

Glossary

wee1

A nuclear kinase that inactivates cyclin-dependent kinase 1.

P-LOOP

The phosphate-binding loop formed by the active-site motif of protein tyrosine phosphatases.

UBIQUITYLATION

A multi-step post-translational modification through which ubiquitin, a highly conserved 76-amino-acid protein, is covalently linked to a lysine residue in a protein. Ubiquitylation targets proteins for degradation by the proteasome, in what is now called the classic ubiquitin-dependent proteolysis pathway.

CHECKPOINT

A point in the cell cycle at which intracellular conditions are self-inspected and the results determine whether progression through the cell cycle is allowed. There are two main cell-cycle checkpoints: G2/M and G1/S.

G2/M CHECKPOINT

A point in the second gap phase (G2) of the eukaryotic cell cycle at which cell progression into and through mitosis (M phase) is determined.

G1/S ARREST

G1/S arrest occurs at the G1/S checkpoint, at which eukaryotic cells determine if progression from the first gap phase (G1) into and through the DNA synthetic phase (S phase) should occur.

p53

A potent tumour-suppressor protein of 53 kDa that participates in the G1/S checkpoint regulation.

YEAST-TWO-HYBRID SYSTEM

A method to identify the physical interaction between two proteins or peptides within yeast cells by detecting a change in transcriptional activity.

MICHAEL-TYPE NUCLEOPHILIC ADDITION

An addition of a new substituent to a double bond that is conjugated to an electron-accepting functional group.

ARYLATION

The attachment of an aromatic substituent to an organic residue.

FLOW CYTOMETRY

A multi-parametric method in which suspended cells flow through a chamber and can be counted and analysed for size and content of fluorescence-tagged components.

UGI REACTION

The condensation reaction of an amine, an isocyanide, an aldehyde and an acid to form a peptide-like strand.

PICTET–SPENGLER CYCLIZATION

The cyclocondensation of an aromatic ethylamine and an aldehyde or ketone to give a tetrahydroisoquinoline.

REGIOISOMERS

Compounds that differ in the arrangement of substituents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyon, M., Ducruet, A., Wipf, P. et al. Dual-specificity phosphatases as targets for antineoplastic agents. Nat Rev Drug Discov 1, 961–976 (2002). https://doi.org/10.1038/nrd963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing