Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutics targeting the innate immune system

Key Points

  • The recent advances in our knowledge of the proteins and the signalling pathways that are involved in innate immunity, together with the identification of cognate ligands for protein receptors of the innate immune system, provide new targets for drug development, which might be useful for combating various human diseases.

  • The key receptors in the innate immune system are the Toll-like receptors (TLRs), of which there are ten in humans, and the nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2, which are intracellular sensors of bacterial products.

  • The leucine-rich repeats present in both TLRs and NOD1/2, and the Toll/interleukin-1 receptor (TIR) domains of TLRs, could be exploited as drug targets.

  • Agonists or antagonists that target the ligand-binding sites of these receptors might also yield new drugs. Small-molecule agonists that target the TLRs have already been developed.

  • The heteromeric nature of the signalling complexes that contain TLRs in association with other molecules might also provide targets for the development of therapeutic drugs.

  • Although further developments could be hampered by limitations on our ability to express proteins for high-throughput screens and by the problems associated with blocking protein–protein interactions, it should be possible to build on the initial success of imidazole quinoline molecules that target TLR7 and TLR8, and the modified CpG-containing compounds that target TLR9.

Abstract

Proteins that recognize the components and products of microorganisms have an important role in innate immunity. Here, I focus on recent advances in our understanding of the function of several such protein families. In particular, I consider how members of the TLR (Toll-like receptor), NOD (nucleotide-binding oligomerization domain)-protein and MyD88 (myeloid differentiation primary-response protein 88) families are providing emerging opportunities for the development of new therapeutics that modify innate immune responses in ways which benefit the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immunity at the crossroads.
Figure 2: TLRs as targets for therapy.
Figure 3: NOD1 and NOD2 as targets for therapy.

Similar content being viewed by others

References

  1. Yamamoto, M., Takeda, K. & Akira, S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40, 861–868 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Beutler, B., Hoebe, K., Du, X. & Ulevitch, R. J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74, 479–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Underhill, D. M. Toll-like receptors: networking for success. Eur. J. Immunol. 33, 1767–1775 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. O'Neill, L. A. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem. Soc. Trans. 31, 643–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dunne, A. & O'Neill, L. A. The interleukin-1 receptor/Toll–like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE [online] 2003, re3 (2003).

    PubMed  Google Scholar 

  6. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 5, 371–382 (2003).

    Article  CAS  Google Scholar 

  9. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  10. Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  12. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003). Provides the first definition of the structural requirements of the NOD1 ligand.

    Article  CAS  PubMed  Google Scholar 

  13. O'Neill, L. A. et al. Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J. Endotoxin Res. 9, 55–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, M. U. & Wesche, H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta 1592, 265–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. O'Neill, L. A., Fitzgerald, K. A. & Bowie, A. G. The Toll–IL-1 receptor adaptor family grows to five members. Trends Immunol. 24, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002). Provides important evidence implicating RICK in both TLR- and NOD-protein signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Imler, J. L. & Hoffmann, J. A. Toll signaling: the TIReless quest for specificity. Nature Immunol. 4, 105–106 (2003).

    Article  CAS  Google Scholar 

  21. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002). Provides a new paradigm that describes different arms of the innate immune response in insects.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, D. et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Nishiya, T. & DeFranco, A. L. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J. Biol. Chem. 279, 19008–19017 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Miyake, K. Endotoxin recognition molecules, Toll-like receptor 4–MD-2. Semin. Immunol. 16, 11–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Akashi, S. et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4–MD-2: higher affinity than that with MD-2 or CD14. J. Exp. Med. 198, 1035–1042 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wetzler, L. M. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine 21, S55–S60 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. Kirschning, C. J. & Schumann, R. R. TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr. Top. Microbiol. Immunol. 270, 121–144 (2002).

    CAS  PubMed  Google Scholar 

  28. Hajjar, A. M. et al. Cutting edge: Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000). Provides key data showing how TLRs comprise heteromeric subunits that determine ligand specificity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mizel, S. B., Honko, A. N., Moors, M. A., Smith, P. S. & West, A. P. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J. Immunol. 170, 6217–6223 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Schulze-Lefert, P. Plant immunity: the origami of receptor activation. Curr. Biol. 14, R22–R24 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Nimchuk, Z., Eulgem, T., Holt, B. F. & Dangl, J. L. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Martin, G. B., Bogdanove, A. J. & Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Martinon, F. & Tschopp, J. Inflammatory caspases; linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Tanabe, T. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587–1597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon producing cells through Toll-like receptor 9. Blood 103, 1433–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kaisho, T. & Akira, S. Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med. 3, 373–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. El Biaze, M. et al. T cell activation, from atopy to asthma: more a paradox than a paradigm. Allergy 58, 844–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Hussain, I. & Kline, J. N. CpG oligodeoxynucleotides: a novel therapeutic approach for atopic disorders. Curr. Drug Targets Inflamm. Allergy 2, 199–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kuchroo, V. K., Umetsu, D. T., DeKruyff, R. H. & Freeman, G. J. The TIM gene family: emerging roles in immunity and disease. Nature Rev. Immunol. 3, 454–462 (2003).

    Article  CAS  Google Scholar 

  42. Melief, C. J. Strategies for immunotherapy of cancer. Adv. Immunol. 75, 235–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hess, J., Schaible, U., Raupach, B. & Kaufmann, S. H. Exploiting the immune system: toward new vaccines against intracellular bacteria. Adv. Immunol. 75, 1–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kaisho, T. & Akira, S. Toll-like receptors as adjuvant receptors. Biochim. Biophys. Acta 1589, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, Z. H. & Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune targeting. Curr. Med. Chem. 10, 1423–1439 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Evans, J. T. et al. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi. 529. Expert Rev. Vaccines 2, 219–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Persing, D. H. Taking Toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Stover, A. G. et al. Structure-activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 279, 4440–4449 (2004).

    Article  PubMed  Google Scholar 

  49. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004). Identifies a naturally occurring ligand for TLR 7 and TLR 8.

    Article  CAS  PubMed  Google Scholar 

  50. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004). Identifies a naturally occurring ligand for TLR7.

    Article  CAS  PubMed  Google Scholar 

  51. Skinner, R. B. Jr. Imiquimod. Dermatol. Clin. 21, 291–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Hengge, U. R. & Cusini, M. Topical immunomodulators for the treatment of external genital warts, cutaneous warts and molluscum contagiosum. Br. J. Dermatol. 149 (Suppl. 66), 15–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Bernard, H. U. Established and potential strategies against papillomavirus infections. J. Antimicrob. Chemother. 53, 137–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunol. 3, 196–200 (2002).

    Article  CAS  Google Scholar 

  57. Baldridge, J. R. et al. Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. J. Endotoxin Res. 8, 453–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000). Among the first reports to indicate a role for the innate immune system in antiviral responses.

    Article  CAS  Google Scholar 

  59. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hoebe, K. & Beutler, B. LPS, dsRNA and the interferon bridge to adaptive immune responses: Trif, Tram, and other TIR adaptor proteins. J. Endotoxin Res. 10, 130–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nature Immunol. 4, 1223–1229 (2003).

    Article  CAS  Google Scholar 

  63. Beutler, B. et al. Lps2 and signal transduction in sepsis: at the intersection of host responses to bacteria and viruses. Scand. J. Infect. Dis. 35, 563–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Honda, K. et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl Acad. Sci. USA 100, 10872–10877 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matsumoto, M., Funami, K., Oshiumi, H. & Seya, T. Toll-like receptor 3: a link between Toll-like receptor, interferon and viruses. Microbiol. Immunol. 48, 147–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Heit, A. et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol. 170, 2802–2805 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Heit, A. et al. CpG-DNA aided cross-priming by cross-presenting B cells. J. Immunol. 172, 1501–1507 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Speigelberg, H. L., Horner, A. A., Takabayashi, K. & Raz, E. Allergen-immunostimulatory oligodeoxynucleotide conjugate: a novel allergoid for immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2, 547–551 (2002).

    Article  Google Scholar 

  69. Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  Google Scholar 

  70. Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  71. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bartfai, T. et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc. Natl Acad. Sci. USA 100, 7971–7976 (2003). Provides the first evidence indicating that it is possible to target TIR–TIR domain interactions with a small molecule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003). This seminal paper describes the use of forward genetics to decipher TLR-signalling pathways and identifies Lps2 as a gene encoding TRIF.

    Article  CAS  PubMed  Google Scholar 

  75. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  77. Fitzgerald, K. A. et al. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Drachenberg, K. J., Heinzkill, M., Urban, E. & Woroniecki, S. R. Efficacy and tolerability of short-term specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A (MPL) for children and adolescents. Allergol. Immunopathol. (Madr.) 31, 270–277 (2003).

    Article  CAS  Google Scholar 

  79. Mothes, N. et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin. Exp. Allergy 33, 1198–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Bienzle, U. et al. Immunization with an adjuvant hepatitis B vaccine after liver transplantation for hepatitis B-related disease. Hepatology 38, 811–819 (2003).

    CAS  PubMed  Google Scholar 

  81. Vernacchio, L. et al. Effect of monophosphoryl lipid A (MPL) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM197 conjugate vaccine in healthy toddlers. Vaccine 20, 3658–3667 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Lynn, M. et al. Extended in vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia. J. Pharmacol. Exp. Ther. 308, 175–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Wong, Y. N. et al. Safety, pharmacokinetics, and pharmacodynamics of E5564, a lipid A antagonist, during an ascending single-dose clinical study. J. Clin. Pharmacol. 43, 735–742 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Liang, E. et al. Pharmacokinetics of E5564, a lipopolysaccharide antagonist, in patients with impaired hepatic function. J. Clin. Pharmacol. 43, 1361–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Agarwala, S. S., Kirkwood, J. M. & Bryant, J. Phase 1, randomized, double-blind trial of 7-allyl-8-oxoguanosine (loxoribine) in advanced cancer. Cytokines Cell. Mol. Ther. 6, 171–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Sauder, D. N., Smith, M. H., Senta-McMillian, T., Soria, I. & Meng T. C. Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob. Agents Chemother. 47, 3846–3852 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones, T. Resiquimod 3M. Curr. Opin. Investig. Drugs 4, 214–218 (2003).

    CAS  PubMed  Google Scholar 

  88. Imiquimod (Aldara) for actinic keratoses. Med. Lett. Drugs Ther. 46, 42–44 (2004).

  89. Prinz, B. M. et al. Treatment of Bowen's disease with imiquimod 5% cream in transplant recipients. Transplantation 77, 790–791 (2004).

    Article  PubMed  Google Scholar 

  90. Kreuter, A. et al. Treatment of anal intraepithelial neoplasia in patients with acquired HIV with imiquimod 5% cream. J. Am. Acad. Dermatol. 50, 980–981 (2004).

    Article  PubMed  Google Scholar 

  91. Huber, A. et al. Topical imiquimod treatment for nodular basal cell carcinomas: an open-label series. Dermatol. Surg. 30, 429–430 (2004).

    PubMed  Google Scholar 

  92. Herbert, W. C. Imiquimod and the treatment of cutaneous T-cell proliferative diseases: at the threshold. Skinmed. 2, 273–274 (2003).

    Article  PubMed  Google Scholar 

  93. Leifer, C. A., Verthelyi, D. & Klinman, D. M. Heterogeneity in the human response to immunostimulatory CpG oligodeoxynucleotides. J. Immunother. 26, 313–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Tulic, M. K. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol. 113, 235–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Bohle, B. AIC. Dynavax. Curr. Opin. Investig. Drugs 4, 603–607 (2003).

    CAS  PubMed  Google Scholar 

  96. Immunostimulatory DNA–Dynavax. AIC, Amb a 1 immunostimulatory conjugate, HBV-ISS, ISS 1018, ISS DNA, ISS DNA–dynavax, ISS1, ISS2. Drugs R D 3, 193–196 (2002).

  97. Paul, S. Technology evaluation: CpG-7909, Coley. Curr. Opin. Mol. Ther. 5, 553–559 (2003).

    CAS  PubMed  Google Scholar 

  98. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. C. Mathison for comments and editorial support and P. Rutledge for administrative support. This work was supported by the National Institutes of Health, The Charles Dana Foundation and The Novartis Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Richard J. Ulevitch is a consultant for the Corixa Corporation (Seattle, United States), which has developed monophosphoryl-lipid-A-based adjuvants, the Ribi adjuvant system and the synthetic adjuvant RC-529. His laboratory also has a grant that is part of a National Institutes of Health (United States) Program Project in which Corixa workers are the Principal Investigators.

Related links

Related links

DATABASES

Entrez Gene

CD14

IKK-α

IKK-β

IL-1R1

IRAK1

IRAK4

IRF3

MD2

MyD88

NOD1

NOD2

RICK

SARM

TIRAP

TLR1

TLR2

TLR3

TLR4

TLR5

TLR6

TLR7

TLR8

TLR9

TLR11

TRAF6

TRAM

TRIF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulevitch, R. Therapeutics targeting the innate immune system. Nat Rev Immunol 4, 512–520 (2004). https://doi.org/10.1038/nri1396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing