Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunology and immunotherapy of Alzheimer's disease

An Erratum to this article was published on 01 June 2006

Key Points

  • Alzheimer's disease affects more than 20 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. It is believed that the main cause of Alzheimer's disease is increased production and accumulation of amyloid-β peptide (amyloid-β1–42).

  • Although inflammation had not been viewed as a hallmark of Alzheimer's disease, amyloid-β deposition activates a potentially pathological innate immune response, including complement, microglial-cell activation and astrocyte proliferation.

  • There is a reduced prevalence of Alzheimer's disease among chronic users of non-steroidal anti-inflammatory drugs (NSAIDs). This might be due to the effects of NSAIDs on the protease that generates amyloid-β1–42 from amyloid precursor protein rather than to anti-inflammatory effects.

  • Immunotherapy in mouse models of Alzheimer's disease by active immunization of amyloid-β or by passive administration of amyloid-β-specific antibodies markedly reduces amyloid-β levels in the brain and reverses behavioural impairment.

  • A human clinical trial of amyloid-β immunization led to meningoencephalitis in some patients with Alzheimer's disease and was discontinued. Nevertheless, in a subset of the clinical trial participants, those with plaque-reactive amyloid-β-specific antibodies in the plasma had a significantly slower rate of cognitive decline than those patients that did not have detectable amyloid-β- specific antibodies.

  • Microglial cells represent a natural mechanism by which protein aggregates and debris can be removed from the brain, and there are multiple routes by which resident microglial cells can be activated to promote clearance of amyloid-β. Evidence from animal models and patients with Alzheimer's disease indicates that microglial-cell activation can lead to amyloid-β clearance.

  • Although there is no clear T-cell response in the brains of patients with Alzheimer's disease, understanding T-cell responses and adaptive immunity has become important in the immunotherapy of Alzheimer's disease. Induction of appropriate T-cell subsets might have a central role in non-antibody-mediated clearance of amyloid-β, most probably by stimulating microglial cells.

Abstract

Although Alzheimer's disease is considered to be a degenerative brain disease, it is clear that the immune system has an important role in the disease process. As discussed in this Review, immune-based therapies that are designed to remove amyloid-β peptide from the brain have produced positive results in animal models of the disease and are being tested in humans with Alzheimer's disease. Although immunotherapy holds great promise for the treatment of Alzheimer's disease, clinical trials of active amyloid-β vaccination of patients with Alzheimer's disease were discontinued after some patients developed meningoencephalitis. New immunotherapies using humoral and cell-based approaches are currently being investigated for the treatment and prevention of Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloid-βformation and deposition in Alzheimer's disease and APP -transgenic mice.
Figure 2: Innate immune response to amyloid-β in Alzheimer's disease.
Figure 3: Mechanisms of amyloid-β clearance by amyloid-β-specific antibody.
Figure 4: Mechanisms of clearance of amyloid-β

Similar content being viewed by others

References

  1. Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Jellinger, K. A. & Bancher, C. AD neuropathology. Neurology 46, 1186–1187 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe, D. J. Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447 (1994). This article explains the amyloid hypothesis in Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  5. Gouras, G. K., Almeida, C. G. & Takahashi, R. H. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's disease. Neurobiol. Aging 26, 1235–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, P. R., O'Connor, K., Tate, W. P. & Abraham, W. C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996). This article shows a correlation between amyloid-β load and cognitive memory deficits in APP -transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  9. Routtenberg, A. Measuring memory in a mouse model of Alzheimer's disease. Science 277, 839–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bronfman, F. C., Moechars, D. & Van Leuven, F. Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol. Dis. 7, 152–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Dewachter, I. et al. Modeling Alzheimer's disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp. Gerontol. 35, 831–841 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kuo, Y. M. et al. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem. 276, 12991–12998 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. McGeer, P. L. & McGeer, E. G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging 22, 799–809 (2001). This article describes the innate immune response in Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  17. Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. McGeer, E. G. & McGeer, P. L. Innate immunity in Alzheimer's disease: a model for local inflammatory reactions. Mol. Interv. 1, 22–29 (2001). References 18 and 19 show that lowering amyloid-β by anti-amyloid therapy improves cognitive behaviour in APP -transgenic mice.

    CAS  PubMed  Google Scholar 

  20. Rogers, J. et al. Complement activation by β-amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA 89, 10016–10020 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Webster, S. & Rogers, J. Relative efficacies of amyloid β peptide (Aβ) binding proteins in Aβ aggregation. J. Neurosci. Res. 46, 58–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. McGreal, E. & Gasque, P. Structure-function studies of the receptors for complement C1q. Biochem. Soc. Trans. 30, 1010–1014 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hafer-Macko, C. E., Dyck, P. J. & Koski, C. L. Complement activation in acquired and hereditary amyloid neuropathy. J. Peripher. Nerv. Syst. 5, 131–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Webster, S. D. et al. Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q. J. Immunol. 166, 7496–7503 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382, 716–719 (1996). A description of the importance of scavenger receptors on microglial cells for amyloid uptake.

    Article  CAS  PubMed  Google Scholar 

  26. Minghetti, L. Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol. 18, 315–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bianca, V. D., Dusi, S., Bianchini, E., Dal Pra, I. & Rossi, F. β-amyloid activates the O2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J. Biol. Chem. 274, 15493–15499 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Weldon, D. T. et al. Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 18, 2161–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McGeer, E. G. & McGeer, P. L. The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol. 33, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Van Muiswinkel, F. L. et al. The amino-terminus of the amyloid-β protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages. J. Neuroimmunol. 96, 121–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Ishii, K. et al. Subacute NO generation induced by Alzheimer's β-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J. 14, 1485–1489 (2000).

    CAS  PubMed  Google Scholar 

  32. Heneka, M. T. et al. Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumour necrosis factor-α/lipopolysaccharide. J. Neurochem. 71, 88–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Butovsky, O., Talpalar, A. E., Ben-Yaakov, K. & Schwartz, M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci. 29, 381–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Streit, W. J. Microglia and Alzheimer's disease pathogenesis. J. Neurosci. Res. 77, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med. 9, 448–452 (2003). A case report of neuropathology in a patient who developed meningoencephalitis following immunization with amyloid-β peptide.

    Article  CAS  PubMed  Google Scholar 

  37. Akiyama, H. & McGeer, P. L. Specificity of mechanisms for plaque removal after Aβ immunotherapy for Alzheimer disease. Nature Med. 10, 117–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Weiner, H. L. & Selkoe, D. J. Inflammation and therapeutic vaccination in CNS diseases. Nature 420, 879–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Monsonego, A. & Weiner, H. L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Meda, L., Baron, P. & Scarlato, G. Glial activation in Alzheimer's disease: the role of Aβ and its associated proteins. Neurobiol. Aging 22, 885–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bamberger, M. E. & Landreth, G. E. Microglial interaction with β-amyloid: implications for the pathogenesis of Alzheimer's disease. Microsc. Res. Tech. 54, 59–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kitazawa, M., Yamasaki, T. R. & Laferla, F. M. Microglia as a potential bridge between the amyloid β-peptide and Tau. Ann. N.Y. Acad. Sci. 1035, 85–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. DeWitt, D. A., Perry, G., Cohen, M., Doller, C. & Silver, J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Exp. Neurol. 149, 329–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med. 9, 453–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Koistinaho, M. et al. Apolipoprotein E promotes astrocyte co-localization and degradation of deposited amyloid-β peptides. Nature Med. 10, 719–726 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Dolev, I. & Michaelson, D. M. A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc. Natl Acad. Sci. USA 101, 13909–13914 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology 47, 425–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Myriad. Molecule of the month. MPC-7869 (Flurizan). Drug News Perspect. 18, 141 (2005).

  49. Yasojima, K., Schwab, C., McGeer, E. G. & McGeer, P. L. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 830, 226–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Xiang, Z. et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr. 10, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Nogawa, S., Zhang, F., Ross, M. E. & Iadecola, C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci. 17, 2746–2755 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoozemans, J. J., Veerhuis, R., Rozemuller, A. J. & Eikelenboom, P. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease. Curr. Drug Targets 4, 461–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001). A description of lowering of amyloid load in APP -transgenic mice by NSAIDs that is independent of their anti-inflammatory activity.

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, Y. et al. Sulindac sulfide is a noncompetitive γ-secretase inhibitor that preferentially reduces Aβ42 generation. J. Biol. Chem. 278, 18664–18670 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Reid, G. et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl Acad. Sci. USA 100, 9244–9249 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Warner, T. D. & Mitchell, J. A. Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: as easy as ABC? Proc. Natl Acad. Sci. USA 100, 9108–9110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, H., Sweeney, D., Greengard, P. & Gandy, S. Metabolism of Alzheimer β-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc. Natl Acad. Sci. USA 93, 4081–4084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marambaud, P., Ancolio, K., Lopez-Perez, E. & Checler, F. Proteasome inhibitors prevent the degradation of familial Alzheimer's disease-linked presenilin 1 and potentiate Aβ42 recovery from human cells. Mol. Med. 4, 147–157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aisen, P. S. et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289, 2819–2826 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Jantzen, P. T. et al. Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci. 22, 2246–2254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA 93, 452–455 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Solomon, B., Koppel, R., Frenkel, D. & Hanan-Aharon, E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl Acad. Sci. USA 94, 4109–4112 (1997). A demonstration that antibody can reduce amyloid-β fibril formation in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frenkel, D., Balass, M. & Solomon, B. N-terminal EFRH sequence of Alzheimer's β-amyloid peptide represents the epitope of its anti-aggregating antibodies. J. Neuroimmunol. 88, 85–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Frenkel, D., Balass, M., Katchalski-Katzir, E. & Solomon, B. High affinity binding of monoclonal antibodies to the sequential epitope EFRH of β-amyloid peptide is essential for modulation of fibrillar aggregation. J. Neuroimmunol. 95, 136–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999). A demonstration that immunization of APP -transgenic mice with amyloid-β clears amyloid.

    Article  CAS  PubMed  Google Scholar 

  66. Weiner, H. L. et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol. 48, 567–579 (2000). Mucosal amyloid immunization reduces amyloid plaques in vivo.

    Article  CAS  PubMed  Google Scholar 

  67. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000). Passive administration of amyloid-β-specific antibody can clear amyloid plaques in vivo.

    Article  CAS  PubMed  Google Scholar 

  68. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B. & Wisniewski, T. Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol. 159, 439–447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vehmas, A. K. et al. β-amyloid peptide vaccination results in marked changes in serum and brain Aβ levels in APPswe/PS1ΔE9 mice, as detected by SELDI-TOF-based ProteinChip technology. DNA Cell Biol. 20, 713–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Li, Q. et al. Overcoming antigen masking of anti-amyloid-β antibodies reveals breaking of B cell tolerance by virus-like particles in amyloid-β immunized amyloid precursor protein transgenic mice. BMC Neurosci. 5, 21 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das, P. et al. Amyloid-β immunization effectively reduces amyloid deposition in FcRγ−/− knock-out mice. J. Neurosci. 23, 8532–8538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, J. et al. A novel recombinant adeno-associated virus vaccine reduces behavioural impairment and β-amyloid plaques in a mouse model of Alzheimer's disease. Neurobiol. Dis. 14, 365–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Lemere C. A. et al. Evidence for peripheral clearance of cerebral Aβ protein following chronic, active Aβ immunization in PSAPP mice. Neurobiol. Dis. 14, 10–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Schiltz, J. G. et al. Antibodies from a DNA peptide vaccination decrease the brain amyloid burden in a mouse model of Alzheimer's disease. J. Mol. Med. 82, 706–714 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. Hara, H. et al. Development of a safe oral Aβ vaccine using recombinant adeno-associated virus vector for Alzheimer's disease. J. Alzheimers Dis. 6, 483–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Frenkel, D., Katz, O. & Solomon, B. Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration. Proc. Natl Acad. Sci. USA 97, 11455–11459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frenkel, D., Dewachter, I., Van Leuven, F. & Solomon, B. Reduction of β-amyloid plaques in brain of transgenic mouse model of Alzheimer's disease by EFRH-phage immunization. Vaccine 21, 1060–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Lavie, V. et al. EFRH-phage immunization of Alzheimer's disease animal model improves behavioural performance in Morris water maze trials. J. Mol. Neurosci. 24, 105–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, E. B. et al. Targeting Aβ oligomers by passive immunization with a conformation selective monoclonal antibody improves learning and memory in APP transgenic mice. J. Biol. Chem. 281, 4292–4299 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. Levites, Y. et al. Anti-Aβ42- and anti-Aβ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J. Clin. Invest. 116, 193–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. McLaurin, J. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med. 8, 1263–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Morgan, D. & Gitter, B. D. Evidence supporting a role for anti-Aβ antibodies in the treatment of Alzheimer's disease. Neurobiol. Aging 25, 605–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Klyubin, I. et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nature Med. 11, 556–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Wilcock, D. M. et al. Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol. Dis. 15, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005). Clinical and pathological effects following amyloid-β immunization of humans are described.

    Article  CAS  PubMed  Google Scholar 

  89. Bayer, A. J. et al. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003). Cognitive improvement in patients with Alzheimer's disease with high amyloid-β-specific antibody titres following amyloid-β immunization.

    Article  CAS  PubMed  Google Scholar 

  92. Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Ferrer, I., Boada Rovira, M., Sanchez Guerra, M. L., Rey, M. J. & Costa-Jussa, F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol. 14, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Masliah, E. et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64, 129–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003). Elderly subjects and Alzheimer's disease patients have increased T-cell responses to amyloid-β in peripheral blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O'Toole, M. et al. Risk factors associated with β-amyloid1–42 immunotherapy in preimmunization gene expression patterns of blood cells. Arch. Neurol. 62, 1531–1536 (2005).

    Article  PubMed  Google Scholar 

  97. Schenk, D., Hagen, M. & Seubert, P. Current progress in β-amyloid immunotherapy. Curr. Opin. Immunol. 16, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Pfeifer, M. et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298, 1379 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. DiCarlo, G., Wilcock, D., Henderson, D., Gordon, M. & Morgan, D. Intrahippocampal LPS injections reduce Aβ load in APP+PS1 transgenic mice. Neurobiol. Aging 22, 1007–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl Acad. Sci. USA 99, 10837–10842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wilcock, D. M. et al. Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci. 23, 3745–37451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Frenkel, D., Maron, R., Burt, D. S. & Weiner, H. L. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J. Clin. Invest. 115, 2423–2433 (2005). Antibody-independent reduction of amyloid in APP -transgenic mice following microglial-cell activation by myelin antigens and glatiramer acetate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakagawa, Y. et al. Brain trauma in aged transgenic mice induces regression of established Aβ deposits. Exp. Neurol. 163, 244–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nature Med. 7, 612–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Rogers, J., Strohmeyer, R., Kovelowski, C. J. & Li, R. Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia 40, 260–269 (2002).

    Article  PubMed  Google Scholar 

  106. Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med. 7, 369–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Mitrasinovic, O. M. & Murphy, G. M. Jr. Microglial overexpression of the M-CSF receptor augments phagocytosis of opsonized Aβ. Neurobiol. Aging 24, 807–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Bacskai, B. J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci. 22, 7873–7878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frenkel, D., Solomon, B. & Benhar, I. Modulation of Alzheimer's β-amyloid neurotoxicity by site-directed single-chain antibody. J. Neuroimmunol. 106, 23–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Thomas, C. J. et al. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett. 531, 184–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Hauss-Wegrzyniak, B., Vraniak, P. D. & Wenk, G. L. LPS-induced neuroinflammatory effects do not recover with time. Neuroreport 11, 1759–1763 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Stalder, A. K. et al. Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J. Immunol. 159, 1344–1351 (1997).

    CAS  PubMed  Google Scholar 

  113. Sly, L. M. et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull. 56, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Qiao, X., Cummins, D. J. & Paul, S. M. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci. 14, 474–482 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Sheng, J. G. et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiol. Dis. 14, 133–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Herber, D. L. et al. Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice. Exp. Neurol. 190, 245–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Quinn, J. et al. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. J. Neuroimmunol. 137, 32–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Jones, T. et al. Protollin: a novel adjuvant for intranasal vaccines. Vaccine 22, 3691–3697 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol. 160, 101–112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci. 23, 2665–2674 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Porter, J. C. & Hogg, N. Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol. 8, 390–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron 17, 553–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Iribarren, P. et al. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β1–42 peptide by upregulating the expression of the G-protein-coupled receptor mFPR2. FASEB J. 19, 2032–2034 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Iribarren, P., Zhou, Y., Hu, J., Le, Y. & Wang, J. M. Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. Immunol. Res. 31, 165–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Verdier, Y., Zarandi, M. & Penke, B. Amyloid β-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci. 10, 229–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Giulian, D. et al. The HHQK domain of β-amyloid provides a structural basis for the immunopathology of Alzheimer's disease. J. Biol. Chem. 273, 29719–29726 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Xie, L. et al. Alzheimer's β-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 22, RC221 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Boland, K., Behrens, M., Choi, D., Manias, K. & Perlmutter, D. H. The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-β peptide but not aggregated, cytotoxic amyloid-β peptide. J. Biol. Chem. 271, 18032–18044 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Qiu, W. Q. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem. 273, 32730–32738 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Yamada, T. et al. Selective localization of gelatinase A, an enzyme degrading β-amyloid protein, in white matter microglia and in Schwann cells. Acta Neuropathol. (Berl) 89, 199–203 (1995).

    Article  CAS  Google Scholar 

  131. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Schwartz, M., Butovsky, O., Bruck, W. & Hanisch, U. K. Microglial phenotype: is the commitment reversible? Trends Neurosci. 29, 68–74 (2006). A description of the role of different microglial-cell subsets in the CNS.

    Article  CAS  PubMed  Google Scholar 

  133. Monsonego, A., Maron, R., Zota, V., Selkoe, D. J. & Weiner, H. L. Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 10273–10278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furlan, R. et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126, 285–291 (2003).

    Article  PubMed  Google Scholar 

  135. Monsonego, A. et al. Aβ-induced meningoencephalitis is IFN-γ dependent and is associated with T-cell dependent clearance of Aβ in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5048–5053 (2006). Description of meningoencephalitis in APP -transgenic mice and reduction of amyloid-β levels mediated by amyloid-β-specific T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Weiner, H. L. et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol. 48, 567–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Tan, J. et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nature Neurosci. 5, 1288–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. LaFerla, F. M. & Oddo, S. Alzheimer's disease: Aβ, tau and synaptic dysfunction. Trends Mol. Med. 11, 170–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Yamamoto, M. et al. Overexpression of monocyte chemotactic protein-1/CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. Am. J. Pathol. 166, 1475–1485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fonseca, M. I., Zhou, J., Botto, M. & Tenner, A. J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci. 24, 6457–6465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Selkoe and to J. El Khoury for discussions and critical review of the manuscript. This work is supported by grants from the National Institute of Ageing, National Institutes of Health (to H.L.W.), Alzheimers' Association (to H.L.W and D.F) and a Human Frontier Science Program Fellowship (to D.F.).

In Table 2, the references were missing for the fifth and ninth rows; the fifth row reference should be 139 and the ninth row reference should be 102. This error has since been corrected in the HTML and PDF versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard L. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

Howard Weiner's laboratory

Glossary

Neurofibrillary tangles

Neurofibrillary tangles are pathological protein aggregates found in neurons of patients with Alzheimer's disease. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as Tau, causing it to aggregate in an insoluble form.

Association cortices

The neocortical regions that are not involved in primary sensory or motor processing. They include frontal areas subserving executive functions and temporoparietal areas supporting visuospatial processing.

Amyloid

A general term for a variety of protein aggregates that accumulate as extracellular fibrils of 7–10 nm. They have common structural features, including a β-pleated sheet conformation and the ability to bind dyes such as Congo Red.

Astrocyte

A star-shaped glial cell of the central nervous system that forms a structural and functional interface between non-nervous tissues and neurons. Once activated, astrocytes express glial fibrillary acidic protein at the cell surface.

Microglial cell

A macrophage-lineage cell that is derived from bone marrow and is present in the central nervous system.

Tau

A neuronal protein that binds to microtubules, promoting their assembly and stability.

Amyloid precursor protein

A membrane glycoprotein component of fast axonal transport, from which amyloid-β is cleaved by proteolytic processing.

Limbic system

A collection of cortical and subcortical structures important for processing memory and emotional information. Prominent structures include the hippocampus and amygdala.

Amyloid fibrils

Structures formed by many disease-causing proteins when they aggregate. Amyloid fibrils share common biochemical characteristics such as detergent insolubility, high β-pleated sheet content and a cross β-structure, protease resistance and the ability to bind lipophilic dyes, such as Congo Red, Thioflavin S and Thioflavin T.

Cerebral amyloid angiopathy

A condition in which there is a deposition of amyloid-β1–40 in the walls of the arteries that supply the brain.

Amyloid plaques

Sites of amyloid-β accumulation and dystrophic neurites in the brains of mouse models and patients with Alzheimer's disease.

Dystrophic neurites

Abnormal swelling that develops secondary to neuronal-cell stress in Alzheimer's disease and other neurodegenerative diseases.

Ramified process

Filamentous branches from the cell body that occur in association with activation of astrocytes and microglial cells.

Soma

The largest part of a cell, the cell body of a microglial cell or astrocyte.

Astrogliosis

An increase in the number of astrocytes owing to proliferation at sites of damage in the central nervous system.

Gliosis

The excess growth of neuroglial cells in the brain that usually follows neuronal-cell death and might lead to the formation of scar tissue.

Fluid percussion injury

Increase of fluid in the brain cranial cavity, leading to brain injury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, H., Frenkel, D. Immunology and immunotherapy of Alzheimer's disease. Nat Rev Immunol 6, 404–416 (2006). https://doi.org/10.1038/nri1843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing