Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Suppressors of cytokine signalling (SOCS) in the immune system

Key Points

  • Several members of the suppressor of cytokine signalling (SOCS) protein family are cytokine-inducible proteins that act in a classical negative-feedback loop to attenuate cytokine signal transduction.

  • SOCS proteins are characterized by a central SRC-homology 2 (SH2) domain, an amino-terminal domain of divergent sequence and a carboxy-terminal conserved SOCS-box domain.

  • The SH2 domains of SOCS proteins interact with activated cytokine receptors and signalling components. SOCS1 is thought to act by means of a direct interaction with Janus kinases (JAKs), which results in the inhibition of tyrosine-kinase activity. Cytokine-induced SH2 protein (CIS) seems to interact with receptors to block the recruitment and activation of signal transducer and activator of transcription (STAT) factors. The action of SOCS3 might combine elements of both of these models.

  • The SOCS-box motif interacts with elongin proteins, which form part of the ubiquitin-mediated proteasomal degradation pathway. So, the inhibitory actions of SOCS proteins seem to combine specific inhibitory interactions with a general mechanism of targeting associated signalling molecules for degradation.

  • Gene-knockout studies have shown that SOCS proteins are indispensable regulators of important physiological systems: SOCS1 is an essential regulator of interferon-γ (IFN-γ) signalling that is crucial to allow the beneficial immunological effects of IFN-γ without the damaging pathological responses. Mice that lack Socs1 die early in life; they have liver disease, inflammatory lesions, lymphopaenia and apoptosis of lymphoid organs, and anomalous T-cell activation.

  • Altered SOCS expression has been associated with inflammatory disease in humans. The manipulation of SOCS-protein function might yield new therapeutic strategies.

Abstract

The suppressors of cytokine signalling (SOCS) are a family of intracellular proteins, several of which have emerged as key physiological regulators of cytokine responses, including those that regulate the immune system. The SOCS proteins seem to regulate signal transduction by combining direct inhibitory interactions with cytokine receptors and signalling proteins with a generic mechanism of targeting associated proteins for degradation. Evidence is emerging for the involvement of SOCS proteins in diseases of the human immune system, which raises the possibility that therapeutic strategies that are based on the manipulation of SOCS activity might be of clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOCS proteins are negative-feedback inhibitors of cytokine signal transduction.
Figure 2: The SOCS family of proteins.

Similar content being viewed by others

References

  1. Nicola, N. A. (ed.) Guidebook to Cytokines and Their Receptors (Oxford University Press, Oxford, 1994).

    Google Scholar 

  2. Gearing, D. P., King, J. A., Gough, N. M. & Nicola, N. A. Expression cloning of a receptor for human granulocyte–macrophage colony-stimulating factor. EMBO J. 8, 3667–3676 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ihle, J. N. Cytokine receptor signalling. Nature 377, 591–594 (1995).

    CAS  PubMed  Google Scholar 

  4. Ivashkiv, L. B. Jak-STAT signaling pathways in cells of the immune system. Rev. Immunogenet. 2, 220–230 (2000).

    CAS  PubMed  Google Scholar 

  5. Duhe, R. J., Wang, L. H. & Farrar, W. L. Negative regulation of Janus kinases. Cell. Biochem. Biophys. 34, 17–59 (2001).

    CAS  PubMed  Google Scholar 

  6. Starr, R. & Hilton, D. Negative regulation of the JAK/STAT pathway. Bioessays 21, 47–52 (1999).

    CAS  PubMed  Google Scholar 

  7. Hilton, D. J. et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl Acad. Sci. USA 95, 114–119 (1998).This paper describes the extended SOCS family of proteins, which are characterized by a carboxy-terminal SOCS-box motif.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Naka, T. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924–929 (1997).

    CAS  PubMed  Google Scholar 

  9. Starr, R. et al. A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921 (1997).

    CAS  PubMed  Google Scholar 

  10. Endo, T. A. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924 (1997).

    CAS  PubMed  Google Scholar 

  11. Matsumoto, A. et al. Suppression of STAT5 functions in liver, mammary glands and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol. Cell. Biol. 19, 6396–6407 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yasukawa, H. et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18, 1309–1320 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholson, S. E. et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385 (1999).References 12 and 13 describe the SH2- and amino-terminal-domain requirements for the interaction of SOCS1 with JAKs and the inhibition of kinase activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasaki, A. et al. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem. 275, 29338–29347 (2000).

    CAS  PubMed  Google Scholar 

  15. Nicholson, S. E. et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc. Natl Acad. Sci. USA 97, 6493–6498 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen, J. A., Lindberg, K., Hilton, D. J., Nielsen, J. H. & Billestrup, N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol. Endocrinol. 13, 1832–1843 (1999).

    CAS  PubMed  Google Scholar 

  17. Bjorbaek, C. et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J. Biol. Chem. 275 , 40649 –40657 (2000).

    CAS  Google Scholar 

  18. Cohney, S. J. et al. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell. Biol. 19, 4980–4988 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki, A. et al. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem. 275, 29338–29347 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schmitz, J., Weissenbach, M., Haan, S., Heinrich, P. C. & Schaper, F. SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J. Biol. Chem. 275, 12848–12856 (2000).

    CAS  PubMed  Google Scholar 

  21. Kamura, T. et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, J. G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl Acad. Sci. USA 96, 2071–2076 (1999).References 21 and 22 show that the SOCS-box domain binds elongins B and C, which establishes a link to the proteasomal degradation pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, C. L. & Burakoff, S. J. Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J. Biol. Chem. 272, 14017–14020 (1997).

    CAS  PubMed  Google Scholar 

  24. Verdier, F. et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J. Biol. Chem. 273, 28185–28190 (1998).

    CAS  PubMed  Google Scholar 

  25. De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).

    CAS  PubMed  Google Scholar 

  26. Kamizono, S. et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL–JAK2. J. Biol. Chem. 276, 12530–12538 (2001).

    CAS  PubMed  Google Scholar 

  27. Frantsve, J., Schwaller, J., Sternberg, D. W., Kutok, J. & Gilliland, D. G. Socs-1 inhibits TEL–JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol. Cell. Biol. 21, 3547–3557 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J. G. et al. The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc. Natl Acad. Sci. USA 98, 13261–13265 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krebs, D. L. & Hilton, D. J. SOCS: physiological suppressors of cytokine signaling. J. Cell. Sci. 113, 2813–2819 (2000).

    CAS  PubMed  Google Scholar 

  30. Greenhalgh, C. J. & Hilton, D. J. Negative regulation of cytokine signaling. J. Leukocyte Biol. 70, 348–356 (2001).

    CAS  PubMed  Google Scholar 

  31. Fujimoto, M. et al. Defective thymocyte development and perturbed homeostasis of T cells in STAT-induced STAT inhibitor-1/suppressors of cytokine signaling-1 transgenic mice. J. Immunol. 165, 1799–1806 (2000).

    CAS  PubMed  Google Scholar 

  32. Marine, J. C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Naka, T. et al. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1)-deficient mice. Proc. Natl Acad. Sci. USA 95, 15577–15582 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Starr, R. et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl Acad. Sci. USA 95, 14395–14399 (1998).References 32–34 describe the phenotype of Socs1−/− mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gresser, I. et al. Electrophoretically pure mouse interferon inhibits growth, induces liver and kidney lesions, and kills suckling mice. Am. J. Pathol. 102, 396–402 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bullen, D. V., Darwiche, R., Metcalf, D., Handman, E. & Alexander, W. S. Neutralization of interferon-γ in neonatal SOCS1−/− mice prevents fatty degeneration of the liver but not subsequent fatal inflammatory disease. Immunology 104, 92–98 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alexander, W. S. et al. SOCS1 is a critical inhibitor of interferon-γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    CAS  PubMed  Google Scholar 

  38. Brysha, M. et al. Suppressor of cytokine signaling-1 attenuates the duration of interferon-γ signal transduction in vitro and in vivo. J. Biol. Chem. 276, 22086–22089 (2001).

    CAS  PubMed  Google Scholar 

  39. Naka, T. et al. SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-γ and IL-4 signaling in vivo. Immunity 14, 535–545 (2001).

    CAS  PubMed  Google Scholar 

  40. Metcalf, D., Di Rago, L., Mifsud, S., Hartley, L. & Alexander, W. S. The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-γ and lacking the SOCS-1 gene. Proc. Natl Acad. Sci. USA 97, 9174–9179 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Metcalf, D. et al. Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppressor of cytokine signaling-1 (SOCS-1). Proc. Natl Acad. Sci. USA 99, 943–948 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Diehl, S. et al. Inhibition of TH1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000).

    CAS  PubMed  Google Scholar 

  43. Morita, Y. et al. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor-necrosis-factor-α-induced cell death in fibroblasts. Proc. Natl Acad. Sci. USA 97, 5405–5410 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuda, T., Yamamoto, T., Kishi, H., Yoshimura, A. & Muraguchi, A. SOCS-1 can suppress CD3ζ- and Syk-mediated NF-AT activation in a non-lymphoid cell line. FEBS Lett. 472, 235–240 (2000).

    CAS  PubMed  Google Scholar 

  45. Li, S. et al. Cytokine-induced Src-homology 2 protein (CIS) promotes T-cell receptor-mediated proliferation and prolongs survival of activated T cells. J. Exp. Med. 191, 985–994 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Marine, J. C. et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98, 617–627 (1999).

    CAS  PubMed  Google Scholar 

  47. Metcalf, D. et al. Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405, 1069–1073 (2000).

    CAS  PubMed  Google Scholar 

  48. Roberts, A. W. et al. Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc. Natl Acad. Sci. USA 98, 9324–9329 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gouilleux-Gruart, V. et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87, 1692–1697 (1996).

    CAS  PubMed  Google Scholar 

  50. Frank, D. A., Mahajan, S. & Ritz, J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT)1 and STAT3 constitutively phosphorylated on serine residues. J. Clin. Invest. 100, 3140–3148 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chai, S. K., Nichols, G. L. & Rothman, P. Constitutive activation of JAKs and STATs in BCR–Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J. Immunol. 159, 4720–4728 (1997).

    CAS  PubMed  Google Scholar 

  52. Suzuki, A. et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J. Exp. Med. 193, 471–481 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shouda, T. et al. Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108, 1781–1788 (2001).This study indicated the efficacy of Socs3 gene therapy for the treatment of experimental arthritis in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dalpke, A. H., Opper, S., Zimmermann, S. & Heeg, K. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J. Immunol. 166, 7082–7089 (2001).

    CAS  PubMed  Google Scholar 

  55. Stoiber, D. et al. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-γ. J. Immunol. 163, 2640–2647 (1999).

    CAS  PubMed  Google Scholar 

  56. Aman, M. J. et al. CIS associates with the interleukin-2 receptor β-chain and inhibits interleukin-2-dependent signaling. J. Biol. Chem. 274, 30266–30272 (1999).

    CAS  PubMed  Google Scholar 

  57. Yoshimura, A. et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin-3 and erythropoietin receptors. EMBO J. 14, 2816–2826 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lejeune, D., Demoulin, J. B. & Renauld, J. C. Interleukin-9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin-9 signalling. Biochem. J. 353, 109–116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen, X., Hong, F., Nguyen, V. A. & Gao, B. IL-10 attenuates IFN-α-activated STAT1 in the liver: involvement of SOCS2 and SOCS3. FEBS Lett. 480, 132–136 (2000).

    CAS  PubMed  Google Scholar 

  60. Adams, T. E. et al. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 273, 1285–1287 (1998).

    CAS  PubMed  Google Scholar 

  61. Pezet, A., Favre, H., Kelly, P. A. & Edery, M. Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J. Biol. Chem. 274, 24497–24502 (1999).

    CAS  PubMed  Google Scholar 

  62. Isaksen, D. E. et al. Requirement for Stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  63. Sadowski, C. L. et al. Insulin induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 skeletal muscle cells is mediated by Stat5*. J. Biol. Chem. 276, 20703–20710 (2001).

    CAS  PubMed  Google Scholar 

  64. Bjorbaek, C. et al. Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140, 2035–2043 (1999).

    CAS  PubMed  Google Scholar 

  65. Emilsson, V., Arch, J. R., de Groot, R. P., Lister, C. A. & Cawthorne, M. A. Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett. 455, 170–174 (1999).

    CAS  PubMed  Google Scholar 

  66. Okabe, S. et al. Thrombopoietin induces an SH2-containing protein, CIS1, which binds to Mpl: involvement of the ubiquitin proteosome pathway. Exp. Hematol. 27, 1542–1547 (1999).

    CAS  PubMed  Google Scholar 

  67. Ram, P. A. & Waxman, D. J. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. 274, 35553–35561 (1999).

    CAS  PubMed  Google Scholar 

  68. Zong, C. S. et al. Mechanism of STAT3 activation by insulin-like growth factor 1 receptor. J. Biol. Chem. 275, 15099–15105 (2000).

    CAS  PubMed  Google Scholar 

  69. Sporri, B., Kovanen, P. E., Sasaki, A., Yoshimura, A. & Leonard, W. J. JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 97, 221–226 (2001).

    CAS  PubMed  Google Scholar 

  70. Park, E. S. et al. Thyrotropin induces SOCS-1 (suppressor of cytokine signaling-1) and SOCS-3 in FRTL-5 thyroid cells. Mol. Endocrinol. 14, 440–448 (2000).

    CAS  PubMed  Google Scholar 

  71. De Sepulveda, P. et al. Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J. 18, 904–915 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hamanaka, I. et al. Induction of JAB/SOCS-1/SSI-1 and CIS3/SOCS-3/SSI-3 is involved in gp130 resistance in cardiovascular system in rat treated with cardiotrophin-1 in vivo. Circ. Res. 88, 727–732 (2001).

    CAS  PubMed  Google Scholar 

  73. Wang, Q., Miyakawa, Y., Fox, N. & Kaushansky, K. Interferon-α directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood 96, 2093–2099 (2000).

    CAS  PubMed  Google Scholar 

  74. Sakamoto, H. et al. A Janus kinase inhibitor, JAB, is an interferon-γ-inducible gene and confers resistance to interferons. Blood 92, 1668–1676 (1998).

    CAS  PubMed  Google Scholar 

  75. Losman, J. A., Chen, X. P., Hilton, D. & Rothman, P. Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol. 162, 3770–3774 (1999).

    CAS  PubMed  Google Scholar 

  76. Trop, S., De Sepulveda, P., Zuniga-Pflucker, J. C. & Rottapel, R. Overexpression of suppressor of cytokine signaling-1 impairs pre-T-cell receptor-induced proliferation but not differentiation of immature thymocytes. Blood 97, 2269–2277 (2001).

    CAS  PubMed  Google Scholar 

  77. Bourette, R. P. et al. Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal. J. Biol. Chem. 276, 22133–22139 (2001).

    CAS  PubMed  Google Scholar 

  78. Kawazoe, Y. et al. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J. Exp. Med. 193, 263–269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, M. M. & Shuai, K. The suppressor of cytokine signaling (SOCS)1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    CAS  PubMed  Google Scholar 

  80. Minamoto, S. et al. Cloning and functional analysis of new members of STAT-induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem. Biophys. Res. Commun. 237, 79–83 (1997).

    CAS  PubMed  Google Scholar 

  81. Boisclair, Y. R., Wang, J., Shi, J., Hurst, K. R. & Ooi, G. T. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J. Biol. Chem. 275, 3841–3847 (2000).

    CAS  PubMed  Google Scholar 

  82. Magrangeas, F., Boisteau, O., Denis, S., Jacques, Y. & Minvielle, S. Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3). Biochem. J. 353, 223–230 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Auernhammer, C. J. & Melmed, S. Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo–pituitary–adrenal axis. Endocrinology 140, 1559–1566 (1999).

    CAS  PubMed  Google Scholar 

  84. Kotenko, S. V. et al. Identification, cloning and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J. Immunol. 166, 7096–7103 (2001).

    CAS  PubMed  Google Scholar 

  85. Cacalano, N. A., Sanden, D. & Johnston, J. A. Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nature Cell. Biol. 3, 460–465 (2001).

    CAS  PubMed  Google Scholar 

  86. Terstegen, L. et al. The inhibition of interleukin-6-dependent STAT activation by mitogen-activated protein kinases depends on tyrosine 759 in the cytoplasmic tail of glycoprotein 130. J. Biol. Chem. 275, 18810–18817 (2000).

    CAS  PubMed  Google Scholar 

  87. Auernhammer, C. J., Chesnokova, V., Bousquet, C. & Melmed, S. Pituitary corticotroph SOCS-3: novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol. Endocrinol. 12, 954–961 (1998).

    CAS  PubMed  Google Scholar 

  88. Magrangeas, F., Boisteau, O., Denis, S., Jacques, Y. & Minvielle, S. Negative regulation of onconstatin M signaling by suppressor of cytokine signaling (SOCS-3). Eur. Cytokine Netw. 12, 309–315 (2001).

    CAS  PubMed  Google Scholar 

  89. Bjorbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell. 1, 619–625 (1998).

    CAS  PubMed  Google Scholar 

  90. Hong, F., Nguyen, V. A. & Gao, B. Tumor-necrosis factor-α attenuates interferon-α signaling in the liver: involvement of SOCS3 and SHP2 and implication in resistance to interferon therapy. FASEB J. 15, 1595–1597 (2001).

    CAS  PubMed  Google Scholar 

  91. Karlsen, A. E. et al. Suppressor of cytokine signaling 3 (SOCS-3) protects β-cells against interleukin-1β- and interferon-γ-mediated toxicity. Proc. Natl Acad. Sci. USA 98, 12191–12196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Emanuelli, B. et al. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J. Biol. Chem. 275, 15985–15991 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by the National Health and Medical Research Council, Canberra, Australia; AMRAD Corporation; the National Institutes of Health, Bethesda, USA; and the Australian Federal Government Cooperative Research Centres Program.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

acute lymphoblastic leukaemia

chronic myelogenous leukaemia

non-Hodgkin's lymphoma

Entrez

hepatitis C virus

InterPro

SH2

SOCS box

STAT

LocusLink

BFGF

CIS

Cis

CNTF

CT1

EGF

elongin B

elongin C

erythropoietin

EPOR

G-CSF

GM-CSF

GP130

growth hormone

IFN-γ (human)

IFN-γ (mouse)

IGF1

Igf1

IL-2

IL-4

IL-6

JAK2

Jak3

LIF

M-CSF

NK1.1

OSM

PDGF

PRL

Rag2

SCF

SHP2

SOCS1

Socs1

SOCS2

Socs2

SOCS3

Socs3

SOCS4

SOCS5

SOCS6

SOCS7

STAT3

Stat5a

Stat5b

Stat6

TEL

TNF

Toll-like receptors

TPO

TSLP

VAV

OMIM

Crohn's disease

polycystic kidneys

rheumatoid arthritis

ulcerative colitis

Glossary

SH2 DOMAIN

A protein domain that is found commonly in signal-transduction molecules; it interacts specifically with phosphotyrosine-containing peptides.

UBIQUITIN-MEDIATED PROTEASOMAL DEGRADATION

An important proteolytic process that involves the tagging of unwanted proteins with ubiquitin, which allows their recognition by the proteasome — a large, multi-component protein-degrading complex.

NATURAL KILLER T CELLS

(NKT cells). A subset of T cells that expresses both NK and T-cell markers. In mice, NKT cells were first identified by their expression of the NK1.1 (NKR-P1C) alloantigen. Some mouse NKT cells express an invariant T-cell receptor (TCR) that uses the Vα14 variable region of the TCR α-chain and recognize lipid–CD1d complexes. Similarly, human NKT cells express an invariant Vα24 receptor. NKT cells are characterized functionally by cytolytic activity and the rapid production of cytokines, including IFN-α and IL-4.

γδ T CELLS

T cells express either a T-cell receptor (TCR) that is composed of α- and β-subunits (αβ TCR) or a TCR that is composed of γ- and δ-subunits (γδ TCR). Most (>90%) T cells have an αβ TCR that recognizes conventional MHC class I or II ligands. T cells that express γδ TCRs are less frequent and the ligands of this type of receptor are less well characterized.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, W. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2, 410–416 (2002). https://doi.org/10.1038/nri818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing