Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling

Key Points

  • Cell membranes are arranged into various lipid assemblies, such as regions that are rich in a particular phosphoinositide and lipid-raft microdomains. The latter are assemblies of cholesterol and glycosphingolipids, and they can function as signalling platforms for a host of different membrane receptors and their downstream effectors.

  • From the cell surface, receptors can be internalized through clathrin-mediated endocytosis. In this pathway, the receptors move to different compartments depending on various sorting signals, such as peptide motifs or post-translational modifications, which are recognized by specific trafficking proteins. Alternatively, cargo molecules can be partitioned and internalized through lipid-raft-dependent pathways, which are clathrin-independent, cholesterol-sensitive and either dynamin-dependent or -independent.

  • The tyrosine-kinase epidermal-growth-factor receptor (EGFR) is the canonical example of a cell-membrane receptor that is internalized through clathrin-mediated endocytosis. However, it has also been detected in lipid-raft microdomains. From the cell surface, EGFR is directed towards early endosomes, where it can be sorted back to the cell surface or to the degradative pathway. The itinerary of EGFR is controlled by protein complexes and lipids, which include the E3 ubiquitin ligase Cbl, adaptor protein-2 (AP2), EGFR-pathway substrate-15 (EPS15), epsin, HRS (hepatocyte-growth-factor-regulated tyrosine-kinase substrate), TSG101 (tumour susceptibility gene-101), and phosphoinositides.

  • Members of the transmembrane serine/threonine kinase transforming-growth-factor-β-receptor family are the first examples of membrane receptors that are internalized not only through clathrin-mediated endocytosis (which results in signalling), but also through lipid-raft-dependent routes (which results in receptor downregulation). Other proteins, such as interleukin-2 receptor-β and autocrine-motility-factor receptor, are also internalized through lipid-raft-mediated endocytic routes.

  • A role for receptor endocytosis and trafficking in the regulation of Hedgehog and Wingless/Int-1 (Wnt) signalling has been proposed on the basis of studies that analysed the distribution of proteins that are implicated in the signalling pathways of these two morphogens.

Abstract

The internalization of various cargo proteins and lipids from the mammalian cell surface occurs through the clathrin and lipid-raft endocytic pathways. Protein–lipid and protein–protein interactions control the targeting of signalling molecules and their partners to various specialized membrane compartments in these pathways. This functions to control the activity of signalling cascades and the termination of signalling events, and therefore has a key role in defining how a cell responds to its environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epidermal-growth-factor-receptor trafficking.
Figure 2: Transforming-growth-factor-β-receptor internalization by clathrin- and lipid-raft-mediated endocytosis.
Figure 3: Internalization through lipid-raft-dependent endocytosis.

Similar content being viewed by others

References

  1. Lemmon, M. A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000). This review and references 5, 9 and 129 (also reviews) present various models for the formation of lipid rafts.

    Article  CAS  Google Scholar 

  5. Mayor, S. & Riezman, H. Sorting GPI-anchored proteins. Nature Rev. Mol. Cell Biol. 5, 110–120 (2004).

    Article  CAS  Google Scholar 

  6. Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem. 279, 3680–3684 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hancock, J. F. Ras proteins: different signals from different locations. Nature Rev. Mol. Cell Biol. 4, 373–384 (2003).

    Article  CAS  Google Scholar 

  8. Parton, R. G. & Hancock, J. F. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Drevot, P. et al. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pierce, S. K. Lipid rafts and B-cell activation. Nature Rev. Immunol. 2, 96–105 (2002).

    Article  CAS  Google Scholar 

  12. Saltiel, A. R. & Pessin, J. E. Insulin signaling in microdomains of the plasma membrane. Traffic 4, 711–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tansey, M. G., Baloh, R. H., Milbrandt, J. & Johnson, E. M. Jr. GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25, 611–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Paratcha, G., Ledda, F. & Ibanez, C. F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113, 867–879 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, D. et al. CD3/CD28 costimulation-induced NF-κB activation is mediated by recruitment of protein kinase C-θ, Bcl10, and IκB kinase β to the immunological synapse through CARMA1. Mol. Cell. Biol. 24, 164–171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sehgal, P. B., Guo, G. G., Shah, M., Kumar, V. & Patel, K. Cytokine signaling: STATS in plasma membrane rafts. J. Biol. Chem. 277, 12067–12074 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Marmor, M. D. & Yarden, Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23, 2057–2070 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effects on endocytosis. EMBO J. 18, 2489–2499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002). Shows that UIM-containing proteins, which bind ubiquitin, recruit ubiquitin ligases and are themselves monoubiquitylated.

    Article  CAS  PubMed  Google Scholar 

  21. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Legendre-Guillemin, V., Wasiak, S., Hussain, N. K., Angers, A. & McPherson, P. S. ENTH/ANTH proteins and clathrin-mediated membrane budding. J. Cell Sci. 117, 9–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. French, A. R., Tadaki, D. K., Niyogi, S. K. & Lauffenburger, D. A. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J. Biol. Chem. 270, 4334–4340 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Bao, J. et al. Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J. Biol. Chem. 275, 26178–26186 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    Article  CAS  Google Scholar 

  32. Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nichols, B. J. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr. Biol. 13, 686–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nichols, B. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, S. B. et al. Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279, 23790–23796 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sharma, D. K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15, 3114–3122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nabi, I. R. & Le, P. U. Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mundy, D. I., Machleidt, T., Ying, Y. S., Anderson, R. G. & Bloom, G. S. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 115, 4327–4339 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Le, P. U. & Nabi, I. R. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J. Cell Sci. 116, 1059–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4, 499–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Parton, R. G. Caveolae — from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

    Article  CAS  Google Scholar 

  45. Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002). Shows that GPI-anchored proteins can be internalized through a caveolae-negative, lipid-raft pathway, can reach tubular–vesicular endosomes and can traffic back to the plasma membrane through the recycling endosome compartment. Provides the first direct evidence for crosstalk between the lipid-raft internalization pathway and the classic endosomal system.

    Article  CAS  PubMed  Google Scholar 

  47. Kirchhausen, T. Clathrin adaptors really adapt. Cell 109, 413–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Mineo, C., Gill, G. N. & Anderson, R. G. Regulated migration of epidermal growth factor receptor from caveolae. J. Biol. Chem. 274, 30636–30643 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Roepstorff, K., Thomsen, P., Sandvig, K. & van Deurs, B. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J. Biol. Chem. 277, 18954–18960 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Pike, L. J. & Casey, L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J. Biol. Chem. 271, 26453–26456 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Yamabhai, M. & Anderson, R. G. Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts. J. Biol. Chem. 277, 24843–24846 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. de Melker, A. A., van der Horst, G., Calafat, J., Jansen, H. & Borst, J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J. Cell Sci. 114, 2167–2178 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wilde, A. et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Confalonieri, S., Salcini, A. E., Puri, C., Tacchetti, C. & Di Fiore, P. P. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J. Cell Biol. 150, 905–912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salcini, A. E., Chen, H., Iannolo, G., De Camilli, P. & Di Fiore, P. P. Epidermal growth factor pathway substrate 15, Eps15. Int. J. Biochem. Cell Biol. 31, 805–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  61. Bache, K. G., Raiborg, C., Mehlum, A., Madshus, I. H. & Stenmark, H. Phosphorylation of Hrs downstream of the epidermal growth factor receptor. Eur. J. Biochem. 269, 3881–3887 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. McPherson, P. S., Kay, B. K. & Hussain, N. K. Signaling on the endocytic pathway. Traffic 2, 375–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  64. Wells, A. et al. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247, 962–964 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Di Fiore, P. P. & Gill, G. N. Endocytosis and mitogenic signaling. Curr. Opin. Cell Biol. 11, 483–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994). Together, references 66 and 67 were the first to show that signalling occurs during EGFR endocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haugh, J. M., Huang, A. C., Wiley, H. S., Wells, A. & Lauffenburger, D. A. Internalized epidermal growth factor receptors participate in the activation of p21(ras) in fibroblasts. J. Biol. Chem. 274, 34350–34360 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Y., Pennock, S., Chen, X. & Wang, Z. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol. Cell. Biol. 22, 7279–7290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1–MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ohba, Y., Kurokawa, K. & Matsuda, M. Mechanism of the spatio-temporal regulation of Ras and Rap1. EMBO J. 22, 859–869 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roy, S., Wyse, B. & Hancock, J. F. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol. Cell. Biol. 22, 5128–5140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carpenter, G. The EGF receptor: a nexus for trafficking and signaling. Bioessays 22, 697–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Mineo, C., James, G. L., Smart, E. J. & Anderson, R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271, 11930–11935 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Furuchi, T. & Anderson, R. G. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem. 273, 21099–21104 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Vaudry, D., Stork, P. J., Lazarovici, P. & Eiden, L. E. Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648–1649 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Pennock, S. & Wang, Z. Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol. Cell. Biol. 23, 5803–5815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klapper, L. N., Waterman, H., Sela, M. & Yarden, Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res. 60, 3384–3388 (2000).

    CAS  PubMed  Google Scholar 

  82. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Mohney, R. P. et al. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J. Biol. Chem. 278, 47038–47045 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massague, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    CAS  PubMed  Google Scholar 

  89. Ebisawa, T. et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477–12480 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Zwaagstra, J. C., Kassam, Z. & O'Connor-McCourt, M. D. Down-regulation of transforming growth factor-β receptors: cooperativity between the types I, II, and III receptors and modulation at the cell surface. Exp. Cell Res. 252, 352–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Garamszegi, N. et al. Transforming growth factor β receptor signaling and endocytosis are linked through a COOH terminal activation motif in the type I receptor. Mol. Biol. Cell 12, 2881–2893 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anders, R. A., Dore, J. J. Jr, Arline, S. L., Garamszegi, N. & Leof, E. B. Differential requirement for type I and type II transforming growth factor β receptor kinase activity in ligand-mediated receptor endocytosis. J. Biol. Chem. 273, 23118–23125 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Ehrlich, M., Shmuely, A. & Henis, Y. I. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-β receptor. J. Cell Sci. 114, 1777–1786 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol. 5, 410–421 (2003). Shows that cell-surface TGFβRs are subjected to a dynamic compartmentalization between raft and non-raft membranes, and can traffic through distinct clathrin-dependent and clathrin-independent endocytic routes that regulate signalling and degradation, respectively.

    Article  CAS  PubMed  Google Scholar 

  95. Yao, D., Ehrlich, M., Henis, Y. I. & Leof, E. B. Transforming growth factor-β receptors interact with AP2 by direct binding to β2 subunit. Mol. Biol. Cell 13, 4001–4012 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, W. et al. β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301, 1394–1397 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Hayes, S., Chawla, A. & Corvera, S. TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mitchell, H., Choudhury, A., Pagano, R. E. & Leof, E. B. Ligand-dependent and-independent TGF-β receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol. Biol. Cell 15, 4166–4178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Itoh, F. et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 7, 321–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Panopoulou, E. et al. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J. Biol. Chem. 277, 18046–18052 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature 431, 205–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Miura, S. et al. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol. Cell. Biol. 20, 9346–9355 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Razani, B. et al. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. J. Biol. Chem. 276, 6727–6738 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Lu, Z. et al. Transforming growth factor β activates Smad2 in the absence of receptor endocytosis. J. Biol. Chem. 277, 29363–29368 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Razani, B., Woodman, S. E. & Lisanti, M. P. Caveolae: from cell biology to animal physiology. Pharmacol. Rev. 54, 431–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Hemar, A. et al. Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor α, β, and γ chains. J. Cell Biol. 129, 55–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Benlimame, N., Le, P. U. & Nabi, I. R. Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9, 1773–1786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Le, P. U., Guay, G., Altschuler, Y. & Nabi, I. R. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277, 3371–3379 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001). This is an elegant study of a viral internalization route through a caveolar/lipid-raft endocytic pathway.

    Article  CAS  PubMed  Google Scholar 

  111. Nichols, B. J. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nature Cell Biol. 4, 374–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Nichols, B. J. et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Incardona, J. P. et al. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc. Natl Acad. Sci. USA 97, 12044–12049 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu, A. J., Zheng, L., Suyama, K. & Scott, M. P. Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev. 17, 1240–1252 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Incardona, J. P., Gruenberg, J. & Roelink, H. Sonic hedgehog induces the segregation of patched and smoothened in endosomes. Curr. Biol. 12, 983–995 (2002). In this study, the authors propose a model in which the trafficking of Ptc–Shh towards lysosomes regulates Smo signalling activity.

    Article  CAS  PubMed  Google Scholar 

  117. Karpen, H. E. et al. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276, 19503–19511 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001). This study links the distribution of Wg, its signalling and its trafficking. It shows that the range of Wg signalling is controlled by its lysosomal degradation, and is regulated by EGF.

    Article  CAS  PubMed  Google Scholar 

  120. Chen, W. et al. Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Hurley, J. H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13, 146–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998). Shows that proteins can be segregated between lipid-raft microdomains and non-lipid-raft membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl Acad. Sci. USA 100, 5795–5800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Pike, L. J. Lipid rafts: heterogeneity on the high seas. Biochem. J. 378, 281–292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McCabe, J. B. & Berthiaume, L. G. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol. Biol. Cell 12, 3601–3617 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kimura, A., Baumann, C. A., Chiang, S. H. & Saltiel, A. R. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc. Natl Acad. Sci. USA 98, 9098–9103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Plant, P. J. et al. Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473–1484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kirchhausen, T. Clathrin . Annu. Rev. Biochem. 69, 699–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol. 4, 409–414 (2003).

    Article  CAS  Google Scholar 

  136. Murphy, R. F. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1, 77–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Griffiths, G. & Gruenberg, J. The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1, 5–9 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Bishop, N. E. Dynamics of endosomal sorting. Int. Rev. Cytol. 232, 1–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  140. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA 92, 8655–8659 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kurzchalia, T. V. & Parton, R. G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Izzi for helpful advice and for her critical review of the manuscript. Work in J.L.W.'s laboratory is supported by grants from the NCIC (National Cancer Institute of Canada), CIHR (Canadian Institute of Health Research), NSERC (National Science and Engineering Research Council) and Genome Canada. J.L.W. is a CIHR Investigator and International Scholar of the HHMI (Howard Hughes Medical Institute). We apologize to the many researchers whose papers could not be cited here because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Wrana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary table S1

Examples of phosphoinositides and their binding partners. (PDF 22 kb)

Related links

Related links

DATABASES

Flybase

Arrow

Dishevelled

Fz

Fz4

Hh

Ptc

Smo

Wg

Wnt5

Interpro

BAR

C2

ENTH

FYVE

HECT

PH

PX

SH2

SoHo

WW

Swiss-Prot

AMFR

CAP

caveolin-1

Cbl

Dickkopf1

EGF

EGFR

EPS15

EPS15R

H-Ras

HRS

IL2Rβ

Kremen-2

NEDD4

Rab11

Raf

SARA

Shh

SMAD2

SMURF1

SMURF2

TβRI

TβRII

TβRIII

TNFα

TNFR1

TSG101

Glossary

LIPID RAFTS

Rich in cholesterol, glycosphingolipids, glycosylphosphatidylinositol-anchored proteins and signalling molecules, these membrane microdomains, which are distinct from clathrin-coated pits, function as signalling platforms.

MORPHOGEN SYSTEM

In morphogen systems, signalling molecules are produced at a localized region and spread away from their source. In embryonic tissue, morphogens influence the movement and organization of cells by forming a concentration gradient.

PHOSPHATIDYLINOSITOL 3-KINASES

(PI3Ks). Type-I and -II PI3Ks phosphorylate the D-3 position of PtdIns4P and PtdIns(4,5)P2, respectively. Type III PI3Ks phosphorylate the D-3 position of PtdIns. Type-I PI3Ks are thought to be involved in numerous signal-transduction and membrane-trafficking systems.

PTEN

(phosphatase and tensin homologue). PTEN dephosphorylates PtdIns(3,4,5)P3 and PtdsIns(3,4)P2 at the D-3 position, and is a negative regulator of PI3K signalling.

GLYCOSPHINGOLIPIDS

Lipids that contain at least one monosaccharide residue and either a sphingolipid or a ceramide (N-acylated sphingoid).

PHAGOCYTOSIS

Phagocytosis is a process that is used by cells to internalize large particles such as debris, apoptotic cells and pathogens. The internalized particles can be stored or degraded by cells.

MACROPINOCYTOSIS

Macropinocytosis is a form of regulated endocytosis that involves the formation of large endocytic vesicles after the closure of cell-surface membrane ruffles.

TRANSFERRIN RECEPTOR

The transferrin receptor is the archetypical cargo for internalization through clathrin-mediated endocytosis. At the cell surface, it binds its ligand (ferrotransferrin) and is internalized into early endosomes, where it releases the iron and then recycles back to the plasma membrane.

(MONO)UBIQUITYLATION

A highly conserved 76-amino-acid protein is covalently attached to a lysine residue in the target protein. Ubiquitylation requires ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-protein ligase (E3) enzymes that are responsible for selecting targets for ubiquitin modification. Two families of E3s are the HECT-domain-containing enzymes (such as SMURFs and NEDD4) and RING-domain-containing enzymes (such as Cbl).

NEDD4

(neuronal-precursor-cell-expressed developmentally downregulated-4). The prototypical protein in a family of E3 ubiquitin ligases that contain a HECT (homologous to E6-AP C terminus) catalytic C-terminal domain and WW and C2 domains that are involved in substrate recognition and cellular localization.

UIM

(ubiquitin-interacting motif). A module of 20 amino acids that specifically recognizes ubiquitin. It is present in endocytic proteins (such as EPS15 and HRS) and in proteasomal components.

LYSOSOME

A type of organelle that is characterized by a low internal pH, contains hydrolytic enzymes and is involved in the post-translational maturation of proteins, the degradation of receptors and the extracellular release of active enzymes.

RAB PROTEINS

Ras-like small G-proteins that control trafficking, exocytosis, endocytosis and endosome fusion. They can be modified by geranylgeranyl groups, are tightly associated with membranes and can be specifically localized to different compartments (for example, Rab5 is localized to early endosomes).

MULTIUBIQUITYLATION

The addition of several monoubiquitin molecules to a target protein. (As opposed to polyubiquitylation, in which a single chain of several ubiquitin molecules is appended to the target protein.)

ESCRT

(endosomal sorting complex required for transport). The multiprotein ESCRT machinery (ESCRT-I, -II and -III) promotes inward vesiculation at the limiting membrane of the sorting endosome, and selects cargo proteins for delivery to the intralumenal vesicles of multivesicular bodies.

MULTIVESICULAR BODIES

Endocytic intermediate organelles in the lysosomal degradative pathway that contain small vesicles and are surrounded by a limiting membrane.

EEA1

(early endosome antigen-1). EEA1 is a membrane-bound, FYVE-domain-containing protein that binds PtdIns3P. It is an effector of the small GTPase Rab5 that controls early-endosome fusion dynamics.

ACYL CHAIN

An acyl chain is a carbonyl group with an alkyl group attached.

FLOTILLIN

Flotillins are integral membrane proteins and constituents of lipid rafts. Flotillin-1 and -2 were originally discovered in neuronal cells as Reggie-2 and -1, respectively, and they are thought to be involved in insulin-receptor and T-cell-receptor signalling.

ANNEXIN

A family of Ca2+- and phospholipid-binding proteins that are found in lipid rafts. They are involved in membrane-trafficking events and in the organization of membrane compartments and the plasma membrane.

CAVEOLIN

These integral membrane proteins have a central hydrophobic domain that forms a hairpin loop inside the membrane to leave both C- and N-terminal domains facing the cytosol.

SIMIAN VIRUS 40

A member of the papilloma-, polyoma- and vacuolating-virus family of non-enveloped DNA viruses. At the cell surface, the virus probably binds the major histocompatibility (MHC) class-I antigen receptor, but whether this mediates its endocytosis into caveolae is unknown.

FLUID-PHASE MARKERS

Markers of fluid-phase endocytosis, which presumably does not involve receptor-mediated trafficking. These markers include proteins such as horseradish peroxidase and dextran.

R-SMADS

(receptor-regulated-SMADs). R-SMADs are transcription factors, and they contain two domains (MAD homologue-1 and -2 (MH1 and MH2)) that are separated by a proline-rich linker. The MH1 domain mediates interactions with proteins and DNA, whereas the MH2 domain mediates protein–protein interactions.

β-ARRESTIN-2

Arrestins are an important family of proteins that are known to be negative regulators of G-protein-coupled receptor (GPCR) signalling. Arrestins bind to phosphorylated GPCRs and recruit clathrin and AP2, which results in receptor internalization and desensitization. These proteins have also been shown to regulate Wnt and TGFβR internalization.

DYNAMIN

An important component of the endocytic machinery that might function both as a regulatory GTPase (by recruiting various components into coated pits and inducing vesicular budding) and as a mechanochemical enzyme (that forms a collar-like structure at the necks of invaginated membranes and promotes fission of the buds).

CHOLERA-TOXIN B SUBUNIT

A type of bacterial toxin that contains an enzymatic A subunit and a binding B subunit. The uptake of cholera toxin is mediated by a glycolipid, the GM1 ganglioside.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roy, C., Wrana, J. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6, 112–126 (2005). https://doi.org/10.1038/nrm1571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing