Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

50 years of allosteric interactions: the twists and turns of the models

Abstract

The concept of indirect or 'allosteric' interaction between topographically distinct sites, and the subsequent 1965 Monod-Wyman-Changeux (MWC) model for the conformational change mediating them, arose around 50 years ago. Many classic regulatory proteins (including haemoglobin, Asp transcarbamylase and nicotinic acetylcholine receptor) follow the central paradigm of the MWC model, which has been expanded and challenged as a result of novel technologies. Importantly, the concept of allosteric interaction has aided our understanding of human diseases and drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Models of allosteric interactions.
Figure 3: An example of a typical allosteric protein.
Figure 4: Diversity of allosteric mechanisms.

References

  1. Changeux, J. P. The feedback control mechanisms of biosynthetic-threonine deaminase by l-isoleucine. Cold. Spring Harb. Symp. Quant. Biol. 26, 313–318 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Gerhart, J. C. & Pardee, A. B. Separation of feedback inhibition from activity of aspartate transcarbamylase (ATCase). Fed. Proc. 20, 224 (1961).

    Google Scholar 

  3. Gerhart, J. C. & Pardee, A. B. The enzymology of control by feedback inhibition. J. Biol. Chem. 237, 891–896 (1962).

    CAS  PubMed  Google Scholar 

  4. Monod, J. & Jacob, F. General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  5. Monod J., Changeux J. P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963).

    Article  CAS  PubMed  Google Scholar 

  6. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. Novick, A. & Szilard, L. in Dynamics of Growth Processes. (ed. Boell, E. J.) 21–32 (Princeton University Press, 1954).

    Google Scholar 

  8. Umbarger, H. E. Evidence for a negative feedback mechanism in the biosynthesis of isoleucine. Science 123, 848 (1956).

    Article  CAS  PubMed  Google Scholar 

  9. Yates, R. A. & Pardee, A. B. Control of pyrimidine biosynthesis in Escherichia coli by a feedback mechanism. J. Biol. Chem. 221, 757–770 (1956).

    CAS  PubMed  Google Scholar 

  10. Changeux, J. P. Effect of L-Threonine and l-isoleucine analogs on L-Threonine deaminase. J. Mol. Biol. 4, 220–225 (1962).

    Article  CAS  PubMed  Google Scholar 

  11. Changeux, J. P. The origins of allostery: from personal memories to material for the future. J. Mol. Biol. 425, 1396–1406 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Gerhart, J. From feedback inhibition to allostery: the enduring example of aspartate transcarbamoylase. FEBS J. http://dx.doi.org/doi:10.1111/febs.12483 (2013).

  13. Frieden, C. Glutamic dehydrogenase. I. The effect of coenzyme on the sedimentation velocity and kinetic behavior. J. Biol. Chem. 234, 809–814 (1959).

    CAS  PubMed  Google Scholar 

  14. Frieden, C. Coenzyme binding, observed by fluorescence enhancement, apparently unrelated to the enzymic activity of glutamic dehydrogenase. Biochim. Biophys. Acta 47, 428–430 (1961).

    Article  CAS  PubMed  Google Scholar 

  15. Yielding, K. L. & Tomkins, G. M. Structural alterations in crystalline glutamic dehydrogenase induced by steroid hormones. Proc. Natl Acad. Sci. USA 46, 1483–1488 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yielding, K. L. & Tomkins, G. M. Inhibition of glutamic dehydrogenase by o-phenanthroline and its analogs. Biochim. Biophys. Acta 62, 327–331 (1962).

    Article  CAS  PubMed  Google Scholar 

  17. Vagelos, P. R., Alberts, A. W. & Martin, D. B. Activation of acetyl-CoA carboxylase and associated alteration of sedimentation characteristics of the enzyme. Biochem. Biophys. Res. Commun. 8, 4–8 (1962).

    Article  CAS  PubMed  Google Scholar 

  18. Krebs, E. G. & Fischer, E. H. Molecular properties and transformations of glycogen phosphorylase in animal tissues. Adv. Enzymol. Relat. Subj. Biochem. 24, 263–290 (1962).

    PubMed  Google Scholar 

  19. Perutz, M. F. et al. Structure of hæmoglobin: a three-dimensional Fourier synthesis at 5.5-A˚ resolution obtained by X-ray analysis. Nature 185, 416–442 (1960).

    Article  CAS  PubMed  Google Scholar 

  20. Koshland, D. E. Jr. Enzyme flexibility and enzyme action. J. Cell Comp. Physiol. 54, 245–258 (1959).

    Article  CAS  PubMed  Google Scholar 

  21. Koshland, D. E. Jr. The role of flexibility in enzyme action. Cold Spring Harb. Symp. Quant. Biol. 28, 473–482 (1963).

    Article  Google Scholar 

  22. Changeux, J. P. Allosteric interactions on biosynthetic l-theonine deaminase from E. coli K12. Cold Spring Harb. Symp. Quant. Biol. 28, 97–504 (1963).

    Article  Google Scholar 

  23. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  24. Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koshland, D. E. Jr, Némethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 5, 365–385 (1966).

    Article  CAS  PubMed  Google Scholar 

  26. Changeux, J. P., Thiéry, J., Tung, Y. & Kittel, C. On the cooperativity of biological membranes. Proc. Natl Acad. Sci. USA 57, 335–341 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimizu, T. S., Le Novere, N., Levin, M. D., Beavil, A. J., Sutton, B. J., Bray, D. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol. 2, 792–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kirschner, K., Eigen, M., Bittman, R. & Voigt, B. The binding of nicotinamide–adenine dinucleotide to yeast d-glyceraldehyde-3-phosphate dehydrogenase: temperature-jump relaxation studies on the mechanism of an allosteric enzyme. Proc. Natl Acad. Sci. USA 56, 1661–1667 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Changeux, J. P., Gerhart, J. C. & Schachman, H. K. Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry 7, 531–538 (1968).

    Article  CAS  PubMed  Google Scholar 

  30. Gerhart, J. C. & Schachman, H. K. Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry 7, 538–552 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. Changeux, J. P. & Rubin, M. M. Allosteric interactions in aspartate transcarbamylase. III. Interpretations of experimental data in terms of the model of Monod, Wyman, and Changeux. Biochemistry 7, 553–561 (1968).

    Article  CAS  PubMed  Google Scholar 

  32. Blangy, D., Buc, H. & Monod, J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol. 31, 13–35 (1968).

    Article  CAS  PubMed  Google Scholar 

  33. Berman, H. M. et al.Trendspotting in the Protein Data Bank. FEBS Lett. 587, 1036–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rose, P. W. et al. Protein Data Bank: new resources for research and education. Nucleic Acids Res. 41, D475–D482 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Changeux, J. P. Allostery and the Monod–Wyman–Changeux model after 50 years. Annu. Rev. Biophys. 41, 103–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Levy, E. D. & Teichmann, S. Structural, evolutionary, and assembly principles of protein oligomerization. Prog. Mol. Biol. Transl. Sci. 117, 25–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kerszberg, M. & Changeux, J. P. A model for reading morphogenetic gradients: autocatalysis and competition at the gene level. Proc. Natl Acad. Sci. USA 91, 5823–5827 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsigelny, I. F., Kouznetsova, V. L., Baitaluk, M. & Changeux, J. P. A hierarchical coherent-gene-group model for brain development. Genes Brain Behav. 12, 147–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Edelstein, S. J. Extensions of the allosteric model for haemoglobin. Nature 230, 224–227 (1971).

    Article  CAS  PubMed  Google Scholar 

  40. Perutz, M. F., Wilkinson, A. J., Paoli, M. & Dodson, G. G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Levantino, M. et al. The Monod–Wyman–Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin. Proc. Natl Acad. Sci. USA 109, 14894–14899 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fischer, S., Olsen, K. W., Nam, K. & Karplus, M. Unsuspected pathway of the allosteric transition in hemoglobin. Proc. Natl Acad. Sci. USA 108, 5608–5613 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cammarata, M., Levantino, M., Wulff, M. & Cupane, A. Unveiling the timescale of the R–T transition in human hemoglobin. J. Mol. Biol. 400, 951–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Tekpinar, M. & Zheng, W. Coarse-grained and all-atom modeling of structural states and transitions in hemoglobin. Proteins 81, 240–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Lipscomb, W. N. & Kantrowitz, E. R. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Acc. Chem. Res. 45, 444–453. (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hilf, R. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hilf, R. J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Corringer, P. J. et al. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure. 20, 941–956 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Taly, A. et al. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J. 88, 3954–3965 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Calimet, N., Simoes, M., Changeux, J. P., Karplus, M., Taly, A. & Cecchini, M. A gating mechanism of pentameric ligand-gated ion channels. Proc. Natl Acad. Sci. USA http://dx.doi.org/110.1073/pnas.1313785110 (2013).

  53. Auerbach, A. The energy and work of a ligand-gated ion channel. J. Mol. Biol. 425, 1461–1475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prevost, M. S. et al. A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nature Struct. Mol. Biol. 19, 642–649 (2012).

    Article  CAS  Google Scholar 

  55. Pozzi, N., Vogt, A. D., Gohara, D. W. & Di Cera, E. Conformational selection in trypsin-like proteases. Curr. Opin. Struct. Biol. 22, 421–431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mosior, M., Six, D. A. & Dennis, E. A. Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273, 2184–2191 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Bouvier, M. Unraveling the structural basis of GPCR activation and inactivation. Nature Struct. Mol. Biol. 2013 20, 539–541 (2013).

    Article  CAS  Google Scholar 

  58. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fotiadis, D. et al. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr. Opin. Struct. Biol. 16, 252–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Fung, J. J. et al. Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J. 28, 3315–3328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Audet, M. & Bouvier, M. Restructuring G-protein- coupled receptor activation. Cell 151, 14–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Daily, M. D. & Gray, J. J. Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLoS Comput. Biol. 5, e1000293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferreiro, D. U., Hegler, J. A., Komives, E. A. & Wolynes, P. G. On the role of frustration in the energy landscapes of allosteric proteins. Proc. Natl Acad. Sci. USA 108, 3499–3503 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ferreon, A. C., Ferreon, J. C., Wright, P. E. & Deniz, A. A. Modulation of allostery by protein intrinsic disorder. Nature. 498, 390–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lewis, M. Allostery and the lac operon. J. Mol. Biol. 425, 2309–2316 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Arkhipov, A. et al. Architecture and membrane interactions of the EGF receptor. Cell 152, 557–569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larion, M., Salinas, R. K., Bruschweiler-Li, L., Miller, B. G. & Brüschweiler, R. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol. 10, e1001452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, P. et al. Structure and allostery of the PKA RIIβ tetrameric holoenzyme. Science. 335, 712–716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalodimos, C. G. Protein function and allostery: a dynamic relationship. Ann. N.Y. Acad. Sci. 1260, 81–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Tzeng, S. R. & Kalodimos, C. G. Protein activity regulation by conformational entropy. Nature. 488, 236–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H. & Kalodimos, C. G. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc. Natl Acad. Sci. USA 106, 6927–6932 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. McLeish, T. C., Rodgers, T. L. & Wilson, M. R. Allostery without conformation change: modelling protein dynamics at multiple scales. Phys. Biol. 10, 056004 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Bray, D. The propagation of allosteric states in large multiprotein complexes. J. Mol. Biol. 425, 1410–1414 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Saibil, H. R., Fenton, W. A., Clare, D. K. & Horwich, A. L. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425, 1476–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A. & Sharon, M. Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc. Natl Acad. Sci. USA 110, 7235–7239 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mikoshiba, K. The discovery and structural investigation of the IP3 receptor and the associated IRBIT protein. Adv. Exp. Med. Biol. 740, 281–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Sledź, P., Förster, F. & Baumeister, W. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425, 1415–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell. 6, 185–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barford, D. Structural insights into anaphase-promoting complex function and mechanism. Phil. Trans. R. Soc. B 366, 3605–3624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliveira, D. M., Nakaie, C. R., Sousa, A. D., Farah, C. S., & Reinach, F. C. Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin. J. Biol Chem. 275, 27513–27519 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Gollapudi, S. K., Mamidi, R., Mallampalli, S. L. & Chandra, M. The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys. J. 103, 940–948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Domitrovic, T. et al. Virus assembly and maturation: auto-regulation through allosteric molecular switches. J. Mol. Biol. 425, 1488–1496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Revah, F. et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature. 353, 846–849 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Taly, A. et al. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc. Natl Acad. Sci. USA 103, 16965–16970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cotecchia, S., Ostrowski, J., Kjelsberg, M. A., Caron, M. G. & Lefkowitz, R. J. Discrete amino acid sequences of the α1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J. Biol. Chem. 267, 1633–1639 (1992).

    CAS  PubMed  Google Scholar 

  87. Taly, A., Corringer, P. J., Guedin, D., Lestage, P. & Changeux, J. P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nature Rev. Drug Discov. 8, 733–750 (2009).

    Article  CAS  Google Scholar 

  88. Changeux, J. P. The concept of allosteric modulation: an overview. Drug Discov. Today Technol. 10, e2203–e228 (2013).

    Article  Google Scholar 

  89. Galzi, J. L. & Changeux, J. P. Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr. Opin. Struct. Biol. 4, 554–565 (1994).

    Article  CAS  Google Scholar 

  90. Sawyer, G. W., Chiara, D. C., Olsen, R. W. & Cohen, J. B. Identification of the bovine γ-aminobutyric acid type A receptor α-subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513 J. Biol. Chem. 277, 50036–50045 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Li, G. D., Chiara, D. C., Cohen, J. B. & Olsen, R. W. Numerous classes of general anesthetics inhibit etomidate binding to γ-aminobutyric acid type A (GABAA) receptors. J. Biol. Chem. 285, 8615–8620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature. 469, 428–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 474, 54–60 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Teichberg, V. I., Sobel, A. & Changeux, J. P. In vitro phosphorylation of the acetylcholine receptor. Nature. 267, 540–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  95. Canals, M., Lane, J. R., Wen, A., Scammells, P. J., Sexton, P. M. & Christopoulos, A. A. Monod–Wyman–Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J Biol Chem. 287, 650–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 337, 232–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science. 254, 1598–1603 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Nussinov, R. & Tsai, C. J. Allostery in disease and in drug discovery. Cell. 153, 293–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Kar, G., Keskin, O., Gursoy, A. & Nussinov, R. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10, 715–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crick, F. H. & Wyman, J. A footnote on allostery. J. Mol. Biol. 425, 1500–1508 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Edelstein, S. J. & Le Novère, N. Cooperativity of allosteric receptors. J. Mol. Biol. 425, 1424–1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Martins, B. M. & Swain, P. S. Trade-offs and constraints in allosteric sensing. PLoS Comput. Biol. 7, e1002261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marzen, S., Garcia, H. G. & Phillips, R. Statistical mechanics of Monod–Wyman–Changeux (MWC) models. J. Mol. Biol. 425, 1433–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Changeux, J. P. On the allosteric properties of biosynthetic L-Threonine deaminase. VI. General discussion. Bull. Soc. Chim. Biol. 47, 281–300 (1965).

    CAS  Google Scholar 

  105. Changeux, J. P. & Edelstein, S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol. Rep. 3, 19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Iwata, S., Kamata, K., Yoshida, S., Minowa, T. & Ohta, T. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Nature Struct. Biol. 1, 176–185 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Kantrowitz, E. R. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Arch. Biochem. Biophys. 519, 81–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Perutz, M. F. X-ray analysis of hemoglobin. Science 140, 863–869 (1963).

    Article  CAS  PubMed  Google Scholar 

  109. Kantrowitz, E. R. & Lipscomb, W. N. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science 241, 669–674 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Lewis, M. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–1254 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Edelstein for helpful comments and P. Taylor and Skaggs Foundation UCSD School of Pharmacy for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Changeux.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

Congenital myasthenic syndrome

An inherited neuromuscular disorder caused by defects at the neuromuscular junction, for instance, by mutations at the level of the postsynaptic receptors. This syndrome is distinct from autoimmune myasthenia gravis.

Induced-fit scheme

(also interpreted as a 'Lamarckian' mechanism). When a ligand binds to a protein site, it instructs a conformational change in the protein that is complementary to its structure and that does not exist in its absence.

Intrinsically disordered protein

Often referred to as a naturally unfolded protein or disordered protein. These proteins are characterized by a lack of a stable and well-defined three-dimensional tertiary structure when the protein exists as an isolated polypeptide chain (a subunit) under physiological conditions.

Ising model

A mathematical model of ferromagnetism in statistical mechanics, named after the physicist Ernst Ising. This model represents magnetic dipole moments of atomic spins arranged in a lattice, allowing each spin to interact with its neighbours and yielding sharp phase transitions, as a simplified model of a strongly cooperative change of state.

Michaelis–Menten hyperbolic kinetics

The simplest and best-known models of enzyme kinetics. It involves an enzyme (E) binding to a substrate (S) to form a complex (ES), which is converted into a product (P) and E. The relation between enzyme velocity, as a function of substrate concentration, follows an hyperbolic law.

Molecular dynamics simulations

A computational method to calculate the time-dependent behaviour of a molecular system. These provide detailed information on the fluctuations and conformational changes of proteins and nucleic acids.

Normal mode computational analysis

A computational method that can reveal the overall change in the conformation of large proteins, without the need to calculate the specific molecular mechanism, such as the motion of specific bonds. For instance, for proteins, each amino acid is represented as a bead and all pairs of beads are connected by springs.

Orthosteric sites

The principal binding sites carried by proteins, for instance, the neurotransmitter-binding sites of receptors in the brain.

Population shift

A formulation, in terms of energy landscape, for proteins of the conformational selection mechanism of the Monod–Wyman–Changeux (MWC) model.

Protomers

The repeated units of a symmetrical oligomeric protein.

Quaternary structure

The arrangement of multiple folded protein units in a multisubunit oligomeric complex.

Rate-equilibrium free energy analysis

An analysis that provides information on transition-state structures. It revealed, for instance, the temporal sequence in which the different regions of an ion channel protein move during a closed–open conformational transition.

Selectionist model of protein regulation

(also interpreted as a 'Darwinian' mechanism). The ligand selectively stabilizes pre-existing conformations when it binds to the state for which it exhibits preferential affinity. That is, the variability of the conformations takes place before selection occurs.

Sigmoidal substrate saturation kinetics

A classic deviation from Michaelis–Menten hyperbolic kinetics, revealing the cooperative interaction between several identical binding sites, as is the case when oxygen binds haemoglobin.

Single-channel electrophysiology

This patch clamp technique affords high resolution of the detailed properties of single-ion channel currents from many cell types.

Startle disease

(also known as hyperekplexia or exaggerated surprise). A neurological disorder classically characterized by pronounced startle responses to tactile or acoustic stimuli and hypertonia, and caused by genetic mutations in a number of different genes (such as the gene encoding Gly receptor).

Temperature-jump measurements

A technique for measuring rapid chemical kinetics, in which the solution is rapidly heated, for example, by the output of a pulsed laser.

The free energy landscape paradigm of protein folding

A statistical description of a potential surface of a protein. It assumes that folding occurs through organizing an ensemble of structures rather than through only a few uniquely defined structural intermediates.

Wide-angle X-ray scattering measurements

(WAXS measurements). An X-ray-diffraction technique that is used to determine the crystalline structure of proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Changeux, JP. 50 years of allosteric interactions: the twists and turns of the models. Nat Rev Mol Cell Biol 14, 819–829 (2013). https://doi.org/10.1038/nrm3695

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing