Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From glutamate co-release to vesicular synergy: vesicular glutamate transporters

An Erratum to this article was published on 19 May 2011

This article has been updated

Key Points

  • Vesicular transporters accumulate neurotransmitters in synaptic vesicles before their regulated release. They are key functional markers as they define the 'transmitter phenotype' of a given neuron.

  • Vesicular glutamate transporters (VGLUTs) are found not only in neurons previously known to use glutamate as their primary transmitter but also in 'non-glutamatergic' neurons, including some that release a monoamine, acetylcholine or GABA.

  • The role of VGLUTs in these non-glutamatergic neurons is the subject of intense research. Two major roles have thus far been proposed: co-release of glutamate as a co-transmitter and enhanced packaging of the primary transmitter through a mechanism called 'vesicular synergy'.

  • The co-release of glutamate by serotonin (5-HT), dopamine and acetylcholine neurons was initially demonstrated in vitro, in isolated neuron microcultures. These initial discoveries were recently validated in vivo in the mouse, using optogenetics and patch-clamp electrophysiology.

  • Vesicular synergy is emerging as an important function of VGLUTs in acetylcholine, serotonin and dopamine neurons. Its molecular mechanisms are still incompletely defined.

  • The behavioural consequences of glutamate co-release and/or vesicular synergy by dopamine, serotonin, acetylcholine or GABA neurons have only recently begun to be explored.

  • Recent work in knockout mice suggests: first, that vesicular glutamate transporter 2 (VGLUT2) in dopamine neurons regulates behavioural activation induced by psychostimulant drugs; second, that VGLUT3 in cholinergic interneurons regulates basal and cocaine-stimulated locomotor activity; and third, that VGLUT3 in 5-HT neurons regulates anxiety-related behaviours.

Abstract

Recent data indicate that 'classical' neurotransmitters can also act as co-transmitters. This notion has been strengthened by the demonstration that three vesicular glutamate transporters (vesicular glutamate transporter 1 (VGLUT1), VGLUT2 and VGLUT3) are present in central monoamine, acetylcholine and GABA neurons, as well as in primarily glutamatergic neurons. Thus, intriguing questions are raised about the morphological and functional organization of neuronal systems endowed with such a dual signalling capacity. In addition to glutamate co-release, vesicular synergy — a process leading to enhanced packaging of the 'primary' transmitter — is increasingly recognized as a major property of the glutamatergic co-phenotype. The behavioural relevance of this co-phenotype is presently the focus of considerable interest.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of vesicular glutamate transporters in the brain.
Figure 2: Heterogeneity of terminals co-expressing VGLUTs and other vesicular neurotransmitter carriers.

Similar content being viewed by others

Change history

  • 19 May 2011

    On page 209 of the above article, 'Nucleus accumbens33,34,35, neostriatum33,34,35' should be listed under 'Terminals' not 'Cell bodies'. The online version of the article has been corrected accordingly.

References

  1. Ni, B., Rosteck, P. R. Jr, Nadi, N. S. & Paul, S. M. Cloning and expression of a cDNA encoding a brain-specific Na+-dependent inorganic phosphate cotransporter. Proc. Natl Acad. Sci. USA 91, 5607–5611 (1994). This is the seminal paper describing the molecular cloning of the first vesicular glutamate transporter. Subsequently renamed VGLUT1, this protein was initially characterized as a brain-specific plasma membrane sodium-dependent inorganic phosphate transporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. Jr & Edwards, R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000). In this pioneering report, the authors elegantly established that BNPI was in fact a vesicular glutamate transporter (VGLUT1). See also reference 2, which was published shortly after this and reached the same conclusion.

    Article  CAS  PubMed  Google Scholar 

  4. Disbrow, J. K., Gershten, M. J. & Ruth, J. A. Uptake of L-[3H] glutamic acid by crude and purified synaptic vesicles from rat brain. Biochem. Biophys. Res. Commun. 108, 1221–1227 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Naito, S. & Ueda, T. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44, 99–109 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Ni, B., Wu, X., Yan, G. M., Wang, J. & Paul, S. M. Regional expression and cellular localization of the Na+-dependent inorganic phosphate cotransporter of rat brain. J. Neurosci. 15, 5789–5799 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aihara, Y. et al. Molecular cloning of a novel brain-type Na+-dependent inorganic phosphate cotransporter. J. Neurochem. 74, 2622–2625 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hisano, S. et al. Regional expression of a gene encoding a neuron-specific Na+-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. Brain Res. Mol. Brain Res. 83, 34–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bai, L., Xu, H., Collins, J. F. & Ghishan, F. K. Molecular and functional analysis of a novel neuronal vesicular glutamate transporter. J. Biol. Chem. 276, 36764–36769 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fremeau, R. T. Jr et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Herzog, E. et al. The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J. Neurosci. 21, RC181 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J. Neurosci. 21, RC182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varoqui, H., Schafer, M. K., Zhu, H., Weihe, E. & Erickson, J. D. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J. Neurosci. 22, 142–155 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellocchio, E. E. et al. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J. Neurosci. 18, 8648–8659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daniels, R. W. et al. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49, 11–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fremeau, R. T. Jr. et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl Acad. Sci. USA 99, 14488–14493 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gras, C. et al. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22, 5442–5451 (2002). Vesicular glutamate transporters were initially believed to be genuine markers of primarily glutamatergic neurons. This was the first paper to report the presence of a VGLUT in neurons previously thought to be 'non-glutamatergic'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schafer, M. K., Varoqui, H., Defamie, N., Weihe, E. & Erickson, J. D. Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J. Biol. Chem. 277, 50734–50748 (2002).

    Article  PubMed  Google Scholar 

  19. Takamori, S., Malherbe, P., Broger, C. & Jahn, R. Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep. 3, 798–803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herzog, E. et al. Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123, 983–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Somogyi, J. et al. GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur. J. Neurosci. 19, 552–569 (2004).

    Article  PubMed  Google Scholar 

  22. Commons, K. G. Locally collateralizing glutamate neurons in the dorsal raphe nucleus responsive to substance P contain vesicular glutamate transporter 3 (VGLUT3). J. Chem. Neuroanat. 38, 273–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson, J., Bland, B. H. & Antle, M. C. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 63, 31–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Ruel, J. et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am. J. Hum. Genet. 83, 278–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seal, R. P. et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57, 263–275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stornetta, R. L., Sevigny, C. P. & Guyenet, P. G. Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J. Comp. Neurol. 444, 191–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Stornetta, R. L., Sevigny, C. P., Schreihofer, A. M., Rosin, D. L. & Guyenet, P. G. Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J. Comp. Neurol. 444, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Dal Bo, G. et al. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J. Neurochem. 88, 1398–1405 (2004). This was the first report demonstrating the presence of a vesicular glutamate transporter in dopamine neurons, thus providing a molecular explanation for their ability to release glutamate — at least in vitro.

    Article  CAS  PubMed  Google Scholar 

  29. Mendez, J. A. et al. Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J. Neurosci. 28, 6309–6318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawano, M. et al. Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J. Comp. Neurol. 498, 581–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi, T., Sheen, W. & Morales, M. Glutamatergic neurons are present in the rat ventral tegmental area. Eur. J. Neurosci. 25, 106–118 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi, T. et al. Differential distribution of the two subtypes of glutamatergic neurons within the midbrain dopamine system. Soc. Neurosci. Abstr. 366.3 (San Diego, California, 13–17 November 2010).

    Google Scholar 

  33. Dal Bo, G. et al. Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience 156, 59–70 (2008). This was the first study to show the presence of VGLUT2 protein in axon terminals of mesencephalic dopamine neurons in vivo , as well as an induction of VGLUT2 expression in these neurons under pathological conditions. See also reference 34 for a follow-up report suggesting regression of the VGLUT2 co-phenotype of dopamine neurons with age, in normal development, and following lesions or sprouting after injury.

    Article  CAS  PubMed  Google Scholar 

  34. Bérubé- Carrière, N. et al. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J. Comp. Neurol. 517, 873–891 (2009).

    Article  CAS  Google Scholar 

  35. Descarries, L. et al. Glutamate in dopamine neurons: synaptic versus diffuse transmission. Brain Res. Rev. 58, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Hioki, H. et al. Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J. Comp. Neurol. 518, 668–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Amilhon, B. et al. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 30, 2198–2210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hioki, H. et al. Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Cereb. Cortex 14, 1266–1275 (2004).

    Article  PubMed  Google Scholar 

  39. Mintz, E. M. & Scott, T. J. Colocalization of serotonin and vesicular glutamate transporter 3-like immunoreactivity in the midbrain raphe of Syrian hamsters (Mesocricetus auratus). Neurosci. Lett. 394, 97–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Shutoh, F., Ina, A., Yoshida, S., Konno, J. & Hisano, S. Two distinct subtypes of serotonergic fibers classified by co-expression with vesicular glutamate transporter 3 in rat forebrain. Neurosci. Lett. 432, 132–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hornung, J. P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Varga, V. et al. Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453 (2009). This was the first paper providing direct evidence of in vivo glutamate release by CNS monoamine neurons, through the use of optogenetics.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, S. & Morales, M. Serotonergic axons terminals with glutamatergic phenotype make synapses on both dopaminergic and nondopaminergic neurons in the ventral tegmental area. Soc. Neurosci. Abstr. 488.6 (San Diego, California, 13–17 November 2010).

    Google Scholar 

  44. Oliveira, A. L. et al. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50, 117–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Herzog, E. et al. Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons. Eur. J. Neurosci. 20, 1752–1760 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kraus, T., Neuhuber, W. L. & Raab, M. Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci. Lett. 360, 53–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Nishimaru, H., Restrepo, C. E., Ryge, J., Yanagawa, Y. & Kiehn, O. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl Acad. Sci. USA 102, 5245–5249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gezelius, H., Wallen-Mackenzie, A., Enjin, A., Lagerstrom, M. & Kullander, K. Role of glutamate in locomotor rhythm generating neuronal circuitry. J. Physiol. Paris 100, 297–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Ren, J. et al. Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011). These authors used an optogenetic approach to establish that habenulo-interpeduncular cholinergic projections co-release glutamate and acetylcholine to activate postsynaptic signals with different kinetics.

    Article  CAS  PubMed  Google Scholar 

  50. Nickerson Poulin, A., Guerci, A., El Mestikawy, S. & Semba, K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J. Comp. Neurol. 498, 690–711 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Boulland, J. L. et al. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J. Comp. Neurol. 480, 264–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kao, Y. H. et al. Evidence that certain retinal bipolar cells use both glutamate and GABA. J. Comp. Neurol. 478, 207–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Boulland, J. L. et al. Vesicular glutamate and GABA transporters sort to distinct sets of vesicles in a population of presynaptic terminals. Cereb. Cortex 19, 241–248 (2009).

    Article  PubMed  Google Scholar 

  54. Fattorini, G. et al. VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals. J. Neurochem. 110, 1538–1546 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Soussi, R., Zhang, N., Tahtakran, S., Houser, C. R. & Esclapez, M. Heterogeneity of the supramammillary-hippocampal pathways: evidence for a unique GABAergic neurotransmitter phenotype and regional differences. Eur. J. Neurosci. 32, 771–785 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zander, J. F. et al. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30, 7634–7645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ottem, E. N., Godwin, J. G., Krishnan, S. & Petersen, S. L. Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J. Neurosci. 24, 8097–8105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gras, C. et al. Developmentally regulated expression of VGLUT3 during early post-natal life. Neuropharmacology 49, 901–911 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Gillespie, D. C., Kim, G. & Kandler, K. Inhibitory synapses in the developing auditory system are glutamatergic. Nature Neurosci. 8, 332–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bourque, M. J. & Trudeau, L. E. GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur. J. Neurosci. 12, 3172–3180 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Descarries, L., Watkins, K. C., Garcia, S., Bosler, O. & Doucet, G. Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J. Comp. Neurol. 375, 167–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Tecuapetla, F. et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci. 30, 7105–7110 (2010). This paper used optogenetics to provide the first conclusive demonstration that mouse mesostriatal dopamine neurons in vivo release glutamate and give rise to excitatory postsynaptic responses in neurons of the nucleus accumbens. See also reference 64, which was published shortly after this and reached the same conclusion. Importantly, this later study also showed the disappearance of glutamate release in conditional VGLUT2 knockout mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hattori, T., Takada, M., Moriizumi, T. & Van der Kooy, D. Single dopaminergic nigrostriatal neurons form two chemically distinct synaptic types: possible transmitter segregation within neurons. J. Comp. Neurol. 309, 391–401 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Forlano, P. M. & Woolley, C. S. Quantitative analysis of pre- and postsynaptic sex differences in the nucleus accumbens. J. Comp. Neurol. 518, 1330–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsudzuki, T. & Tsujita, M. Isoosmotic isolation of rat brain synaptic vesicles, some of which contain tyrosine hydroxylase. J. Biochem. 136, 239–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Fortin, G., Mendez, J. A., Bourque, M. J. & Trudeau, L. E. Dopamine neurons establish heterogeneous subtypes of axon terminals only a subset of which contain VMAT2 and VGLUT2. Soc. Neurosci. Abstr. 815.6 (Chicago, Ilinois, 17–21 October 2009).

  69. Johnson, M. D. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12, 433–442 (1994). This paper used an elegant microculture system to demonstrate co-release of glutamate by a monoamine neuron (in this case, 5-HT) for the first time. See also reference 60 for similar findings in dopamine neurons.

    Article  CAS  PubMed  Google Scholar 

  70. Martin-Ibanez, R. et al. Vesicular glutamate transporter 3 (VGLUT3) identifies spatially segregated excitatory terminals in the rat substantia nigra. Eur. J. Neurosci. 23, 1063–1070 (2006).

    Article  PubMed  Google Scholar 

  71. Huh, C. Y., Danik, M., Manseau, F., Trudeau, L. E. & Williams, S. Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via mechanisms mediated by p75NTR. J. Neurosci. 28, 1404–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sotty, F. et al. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J. Physiol. 551, 927–943 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Descarries, L., Gisiger, V. & Steriade, M. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 53, 603–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Mechawar, N., Watkins, K. C. & Descarries, L. Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat. J. Comp. Neurol. 443, 250–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Gutierrez, R. et al. Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J. Neurosci. 23, 5594–5598 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Noh, J., Seal, R. P., Garver, J. A., Edwards, R. H. & Kandler, K. Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nature Neurosci. 13, 232–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Chery, N. & de Koninck, Y. Junctional versus extrajunctional glycine and GABAA receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J. Neurosci. 19, 7342–7355 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Herzog, E., Takamori, S., Jahn, R., Brose, N. & Wojcik, S. M. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J. Neurochem. 99, 1011–1018 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Gras, C. et al. The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nature Neurosci. 11, 292–300 (2008). Using a Vglut3 knockout mouse model, this study was the first to describe vesicular synergy for acetylcholine and glutamate in striatal cholinergic interneurons. This was also the first time that the concept of vesicular synergy was proposed as a functional role of VGLUTs in neurons that are not classically known to be glutamatergic.

    Article  CAS  PubMed  Google Scholar 

  80. Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010). This was the first study to examine the putative role of VGLUT2-mediated glutamate co-entry in promoting vesicular monoamine storage by use of an in vitro system. This paper also addressed reward learning in a conditional VGLUT2 knockout mouse, and found it to be normal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santos, M. S., Li, H. & Voglmaier, S. M. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience 158, 189–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Fei, H., Grygoruk, A., Brooks, E. S., Chen, A. & Krantz, D. E. Trafficking of vesicular neurotransmitter transporters. Traffic 9, 1425–1436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grygoruk, A. et al. A tyrosine-based motif localizes a Drosophila vesicular transporter to synaptic vesicles in vivo. J. Biol. Chem. 285, 6867–6878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Voglmaier, S. M. & Edwards, R. H. Do different endocytic pathways make different synaptic vesicles? Curr. Opin. Neurobiol. 17, 374–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Mutch, S. A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. 31, 1461–1470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chuhma, N. et al. Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J. Neurosci. 24, 972–981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Birgner, C. et al. VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc. Natl Acad. Sci. USA 107, 389–394 (2010). This was the first report describing the behavioural consequences of the conditional deletion of a VGLUT in dopamine neurons. The knockout mice showed a blunted behavioural activation in response to amphetamine compared to controls.

    Article  CAS  PubMed  Google Scholar 

  89. Trudeau, L. E. & Gutierrez, R. On cotransmission & neurotransmitter phenotype plasticity. Mol. Interv. 7, 138–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Moutsimilli, L. et al. Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 49, 890–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Moutsimilli, L. et al. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54, 497–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Strata, P. & Harvey, R. Dale's principle. Brain Res. Bull. 50, 349–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Eccles, J. C., Fatt, P. & Koketsu, K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 126, 524–562 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dale, H. H. Pharmacology and nerve endings. Proc. R. Soc. Med. 28, 319–330 (1934).

    Google Scholar 

  95. Xie, X. S., Stone, D. K. & Racker, E. Determinants of clathrin-coated vesicle acidification. J. Biol. Chem. 258, 14834–14838 (1983).

    CAS  PubMed  Google Scholar 

  96. Hartinger, J. & Jahn, R. An anion binding site that regulates the glutamate transporter of synaptic vesicles. J. Biol. Chem. 268, 23122–23127 (1993).

    CAS  PubMed  Google Scholar 

  97. Juge, N. et al. Metabolic control of vesicular glutamate transport and release. Neuron 68, 99–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Edwards, R. H. The neurotransmitter cycle and quantal size. Neuron 55, 835–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Juge, N., Yoshida, Y., Yatsushiro, S., Omote, H. & Moriyama, Y. Vesicular glutamate transporter contains two independent transport machineries. J. Biol. Chem. 281, 39499–39506 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Schenck, S., Wojcik, S. M., Brose, N. & Takamori, S. A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nature Neurosci. 12, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Almqvist, J., Huang, Y., Laaksonen, A., Wang, D. N. & Hovmoller, S. Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci. 16, 1819–1829 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moriyama, Y. & Yamamoto, A. Glutamatergic chemical transmission: look! Here, there, and anywhere. J. Biochem. 135, 155–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Maycox, P. R., Deckwerth, T., Hell, J. W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263, 15423–15428 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the El Mestikawy Laboratory was supported by grants from the Institut National de la Santé et de la Recherche Médicale, Agence Nationale pour la Recherche, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Canadian Research chair, Douglas Mental Health University Institute and Canadian Foundation for Innovation. Research in the Mackenzie Laboratory was supported by the Swedish Research Council, the Swedish Brain Foundation, the Åhlén and Wiberg Foundations, the National Board of Health and Welfare and Uppsala University, Sweden. Research in the Descarries Laboratory was supported by grant NRF-3,544 from the Canadian Institutes of Health Research (CIHR). Research in the Trudeau Laboratory was also supported by grants from the CIHR, the National Alliance for Research on Schizophrenia and Depression, Neuroscience Canada and the Natural Sciences and Engineering Research Council of Canada. L.-E.T. and A.W.-M. share a grant from the Swedish Foundation for International Cooperation in Research and Higher Education. The authors thank B. Amilhon for help in the design of Figure. 2, N. Bérubé-Carrière for help in the preparation of Table 1 and B. Gasnier for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis-Eric Trudeau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Louis-Eric Trudeau's homepage

Salah El Mestikawy's Douglas Mental Health University Institute homepage

Salah El Mestikawy's Pathophysiology of Central Nervous System Disorders homepage

Åsa Wallén-Mackenzie's homepage

Laurent Descarries's homepage

Glossary

Asymmetrical synapse

An asymmetrical synapse (or Gray type I synapse) contains predominantly round or spherical small synaptic vesicles and are characterized by a thickened postsynaptic density. Asymmetrical synapses are thought to be excitatory.

Tyrosine hydroxylase

The enzyme that converts tyrosine to dihydroxyphenylalanine (DOPA). This reaction is the rate-limiting step in the biosynthesis of catecholamines (dopamine, noradrenaline and adrenaline).

Microculture

A primary culture system that allows single-neuron cultures by growing neurons on microdroplets of growth substrate.

Choline-acetyltransferase

(ChAT). The enzyme that catalyses the synthesis of acetylcholine from acetyl-CoA and choline. One isoform of ChAT has been identified — this is a specific marker of cholinergic neurons.

Renshaw cell

A GABAergic interneuron found in the ventral horn of the spinal cord. Renshaw cells form and receive excitatory recurrent collaterals from, and send inhibitory synapses on to, spinal motor neurons.

Optogenetics

The use of genetically encoded light-activated proteins (for example, ion channels) to control functional parameters (for example, the membrane potential) of targeted neuronal populations.

Vesicular inhibitory amino acid transporter

(VIAAT; also known as VGAT). A proton-dependent vesicular transporter that accumulates the inhibitory transmitters GABA and glycine into synaptic vesicles.

Dopamine transporter

A plasma membrane protein from the family of Na+- and Cl-dependent transporters. It efficiently takes dopamine up from the extracellular space into neurons (affinity 10−7 M) using energy based on the Na+ gradient generated by the Na+/K+ ATPase.

Vesicular monoamine transporters

(VMATs). Synaptic vesicle proteins that translocate monoamines (dopamine, noradrenaline, 5HT and histamine) from the cytoplasm into vesicles. The driving force is the proton gradient generated by the vacuolar-type proton ATPase (V-ATPase). Two isoforms have been cloned, VMAT1 in the peripheryand VMAT2 in the CNS. VMATs belong to a large family of sugar transporters that also includes the vesicular acetylcholine transporter (VAChT).

Tryptophan hydroxylase

(TPH). The rate-limiting enzyme for the biosynthesis of serotonin (5-hydroxytryptamine (5-HT)). TPHs convert tryptophan to 5-hydroxytryptophan. Two TPH genes have been identified in mammals: TPH1 is expressed in the periphery and TPH2 in raphe nuclei.

Autaptic connection

A synaptic contact established by a neuron onto its own dendrites or cell body.

Non-synaptic axon terminal

An axon terminal (varicosity) that displays no morphologically identifiable synaptic membrane specialization (junctional complex). Also referred to as an asynaptic terminal or free nerve ending.

Vesicular acetylcholine transporters

(VAChTs). Synaptic vesicle proteins mediating the accumulation of acetylcholine into secretory vesicles. VAChTs use the proton gradient generated by the vacuolar-type proton ATPase (V-ATPase) as the driving force.

Stimulated emission depletion (STED) microscopy

A high-resolution fluorescence microscopy technique that takes advantage of de-excitation of fluorescent dyes to partly overcome the resolution limit imposed by diffraction.

Total internal reflection fluorescence (TIRF) microscopy

A high-resolution fluorescence microscopy technique that takes advantage of a laser-induced evanescent wave of fluorescence emission very close to the interface of two media that have different refractive indices.

Conditioned place preference paradigm

A behavioural test commonly used with rodents, in which drug administration is paired with specific environmental cues. On the test day, the proportion of time spent in the chamber previously associated with the drug provides an estimate of the positive subjective properties of the drug, as well as of its addictive potential.

Miniature synaptic current

A synaptic current that is due to the simultaneous activation of ionotropic receptors following the release of a quantum of neurotransmitter. A mixed miniature synaptic current is possible if two different types of neurotransmitters are present in a given synaptic vesicle and the corresponding receptors are present postsynaptically.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Mestikawy, S., Wallén-Mackenzie, Å., Fortin, G. et al. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 12, 204–216 (2011). https://doi.org/10.1038/nrn2969

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing