Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal fibrosis: novel insights into mechanisms and therapeutic targets

This article has been updated

Abstract

Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability—a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.

Key Points

  • Renal fibrosis is the common end point for all progressive renal diseases

  • This entity involves virtually all intrinsic and infiltrating cells and is characterized by alterations in their phenotype

  • Whether these alterations are part of a regenerative program or are largely pathological is still not clear

  • Many potential treatment targets for renal fibrosis have been identified in animal models

  • The lack of noninvasive diagnostic tools for renal fibrosis hinders efficient translation of these targets into clinical practice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological features of renal fibrosis.
Figure 2: Immunohistochemical features of renal fibrosis in rats and mice 5 days after UUO.
Figure 3: PDGF regulation and signaling.
Figure 4: TGF-β modulation and signaling.

Similar content being viewed by others

Change history

  • 23 September 2010

    In the version of this article initially published online, there was a mistake in Figure 4. The errors have been corrected in all electronic versions of the text.

References

  1. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schlondorff, D. O. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 74, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Chevalier, R. L. Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat. Clin. Pract. Nephrol. 2, 157–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol. 130, 247–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ricardo, S. D., van Goor, H. & Eddy, A. A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118, 3522–3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Docherty, N. G., O'Sullivan, O. E., Healy, D. A., Fitzpatrick, J. M. & Watson, R. W. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am. J. Physiol. Renal Physiol. 290, F4–F13 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kurts, C., Heymann, F., Lukacs-Kornek, V., Boor, P. & Floege, J. Role of T cells and dendritic cells in glomerular immunopathology. Semin. Immunopathol. 29, 317–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sung, S. S. & Bolton, W. K. T cells and dendritic cells in glomerular disease: the new glomerulotubular feedback loop. Kidney Int. 77, 393–399 (2010).

    Article  PubMed  Google Scholar 

  10. Holdsworth, S. R. & Summers, S. A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol. 19, 2254–2261 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y. New insights into epithelial–mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Boor, P., Sebeková, K., Ostendorf, T. & Floege, J. Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 22, 3391–3407 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sorrell, J. M. & Caplan, A. I. Fibroblasts—a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 276, 161–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 43, 146–155 (2010).

    Article  PubMed  Google Scholar 

  16. Eyden, B. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. Ultrastruct. Pathol. 25, 39–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ru, Y., Eyden, B., Curry, A., McWilliam, L. J. & Coyne, J. D. Actin filaments in human renal tubulo-interstitial fibrosis: significance for the concept of epithelial–myofibroblast transformation. J. Submicrosc. Cytol. Pathol. 35, 221–233 (2003).

    CAS  PubMed  Google Scholar 

  18. Muchaneta-Kubara, E. C. & el Nahas, A. M. Myofibroblast phenotypes expression in experimental renal scarring. Nephrol. Dial. Transplant. 12, 904–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picard, N., Baum, O., Vogetseder, A., Kaissling, B. & Le Hir, M. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem. Cell Biol. 130, 141–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Sommer, M. et al. Abnormal growth and clonal proliferation of fibroblasts in an animal model of unilateral ureteral obstruction. Nephron 82, 39–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A. & Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med. 15, 657–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Rohatgi, R. & Flores, D. Intratubular hydrodynamic forces influence tubulointerstitial fibrosis in the kidney. Curr. Opin. Nephrol. Hypertens. 19, 65–71 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, L. et al. Aberrant planar cell polarity induced by urinary tract obstruction. Am. J. Physiol. Renal Physiol. 297, F1526–F1533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujigaki, Y. et al. Transient myofibroblast differentiation of interstitial fibroblastic cells relevant to tubular dilatation in uranyl acetate-induced acute renal failure in rats. Virchows Arch. 446, 164–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Takeji, M. et al. Smooth muscle alpha-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. J. Biol. Chem. 281, 40193–40200 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Taneda, S. et al. Obstructive uropathy in mice and humans: potential role for PDGF-D in the progression of tubulointerstitial injury. J. Am. Soc. Nephrol. 14, 2544–2555 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Boor, P. et al. PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrol. Dial. Transplant. 22, 1323–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Ostendorf, T. et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17, 1054–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kliem, V. et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int. 49, 666–678 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int. 43, 286–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Hawthorne, T. et al. A phase I study of CR002, a fully-human monoclonal antibody against platelet-derived growth factor-D. Int. J. Clin. Pharmacol. Ther. 46, 236–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Floege, J. et al. Localization of PDGF alpha-receptor in the developing and mature human kidney. Kidney Int. 51, 1140–1150 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Floege, J., Hudkins, K. L., Davis, C. L., Schwartz, S. M. & Alpers, C. E. Expression of PDGF alpha-receptor in renal arteriosclerosis and rejecting renal transplants. J. Am. Soc. Nephrol. 9, 211–223 (1998).

    CAS  PubMed  Google Scholar 

  37. Eitner, F. et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J. Am. Soc. Nephrol. 14, 1145–1153 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Eitner, F. et al. Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney. J. Am. Soc. Nephrol. 13, 910–917 (2002).

    CAS  PubMed  Google Scholar 

  39. Eitner, F. et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J. Am. Soc. Nephrol. 19, 281–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Nat. Genet. 36, 1111–1116 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, X. R., Chung, A. C., Wang, X. J., Lai, K. N. & Lan, H. Y. Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am. J. Physiol. Renal Physiol. 295, F118–F127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, X. R., Chung, A. C., Zhou, L., Wang, X. J. & Lan, H. Y. Latent TGF-beta1 protects against crescentic glomerulonephritis. J. Am. Soc. Nephrol. 19, 233–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeisberg, M. Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol. Dial. Transplant. 21, 568–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, F1060–F1067 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zeisberg, M. et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Zeisberg, M., Shah, A. A. & Kalluri, R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280, 8094–8100 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yanagita, M. Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int. 70, 989–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka, M. et al. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J. Clin. Invest. 120, 768–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grgic, I. et al. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc. Natl Acad. Sci. USA 106, 14518–14523 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krupa, A. et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432–3437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22, 4126–4135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rastaldi, M. P. et al. Epithelial–mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 62, 137–146 (2002).

    Article  PubMed  Google Scholar 

  55. Hertig, A. et al. Early epithelial phenotypic changes predict graft fibrosis. J. Am. Soc. Nephrol. 19, 1584–1591 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Li, L., Zepeda-Orozco, D., Black, R. & Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 176, 1767–1778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Docherty, N. G. et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction. Kidney Int. 75, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Faulkner, J. L., Szcykalski, L. M., Springer, F. & Barnes, J. L. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am. J. Pathol. 167, 1193–1205 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheerin, N. S. & Sacks, S. H. Leaked protein and interstitial damage in the kidney: is complement the missing link? Clin. Exp. Immunol. 130, 1–3 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rangan, G. K., Pippin, J. W., Coombes, J. D. & Couser, W. G. C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria. Kidney Int. 67, 492–503 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Rangan, G. K., Pippin, J. W. & Couser, W. G. C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney Int. 66, 1838–1848 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Boor, P. et al. Complement C5 mediates experimental tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 18, 1508–1515 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Pan, H. et al. Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Am. J. Physiol. Renal Physiol. 296, F496–F504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cybulsky, A. V. Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int. 77, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Inagi, R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp. Nephrol. 112, e1–e9 (2009).

    Article  PubMed  Google Scholar 

  71. Periyasamy-Thandavan, S., Jiang, M., Schoenlein, P. & Dong, Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Renal Physiol. 297, F244–F256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Periyasamy-Thandavan, S. et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4, 783–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15, 1875–1886 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Menke, J. et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Invest. 119, 2330–2342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 5, 713–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Cho, K. H., Kim, H. J., Kamanna, V. S. & Vaziri, N. D. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim. Biophys. Acta 1800, 6–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Cho, K. H., Kim, H. J., Rodriguez-Iturbe, B. & Vaziri, N. D. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am. J. Physiol. Renal Physiol. 297, F106–F113 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, H. J., Moradi, H., Yuan, J., Norris, K. & Vaziri, N. D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol. 296, F1297–F1306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, J. et al. Peroxisome proliferator-activated receptors and renal diseases. Front. Biosci. 14, 995–1009 (2009).

    Article  CAS  Google Scholar 

  82. Toblli, J. E. et al. Antifibrotic effects of pioglitazone on the kidney in a rat model of type 2 diabetes mellitus. Nephrol. Dial. Transplant. 24, 2384–2391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawai, T. et al. PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab. Invest. 89, 47–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Higgins, D. F., Kimura, K., Iwano, M. & Haase, V. H. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7, 1128–1132 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kimura, K. et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023–F1029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li, J., Qu, X. & Bertram, J. F. Endothelial–myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol. 175, 1380–1388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, X. J. et al. The aging kidney. Kidney Int. 74, 710–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Wilkinson, L. et al. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int. 76, 1161–1171 (2009).

    Article  PubMed  Google Scholar 

  91. Hakroush, S. et al. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am. J. Pathol. 175, 1883–1895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sakai, N. et al. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc. Natl Acad. Sci. USA 103, 14098–14103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Niedermeier, M. et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl Acad. Sci. USA 106, 17892–17897 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sakai, N. et al. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum. Pathol. 41, 672–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shao, D. D., Suresh, R., Vakil, V., Gomer, R. H. & Pilling, D. Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J. Leukoc. Biol. 83, 1323–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, S. L., Castaño, A. P., Nowlin, B. T., Lupher, M. L. Jr & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183, 6733–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Roufosse, C. et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J. Am. Soc. Nephrol. 17, 775–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Broekema, M. et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol. 18, 165–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Henderson, N. C. & Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev. 230, 160–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, F. Y., Liu, J., Kitching, A. R., Manthey, C. L. & Nikolic-Paterson, D. J. Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. Am. J. Physiol. Renal Physiol. 296, F177–F185 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nishida, M. & Hamaoka, K. Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp. Nephrol. 110, e31–e36 (2008).

    Article  PubMed  Google Scholar 

  107. Wang, Y. et al. By homing to the kidney, activated macrophages potently exacerbate renal injury. Am. J. Pathol. 172, 1491–1499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishida, M. et al. Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem. Biophys. Res. Commun. 332, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Krüger, T. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J. Am. Soc. Nephrol. 15, 613–621 (2004).

    Article  PubMed  Google Scholar 

  110. Macconi, D. et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol. 20, 123–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sakamoto, I. et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 75, 828–838 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Matsui, K. et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J. Am. Soc. Nephrol. 14, 1981–1989 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int. 67, 404–419 (2005).

    Article  PubMed  Google Scholar 

  115. Zhang, T. et al. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology (Carlton) 13, 128–138 (2008).

    Article  CAS  Google Scholar 

  116. Zhang, T. et al. Functional, histological and biochemical consequences of renal lymph disorder in mononephrectomized rats. J. Nephrol. 22, 109–116 (2009).

    CAS  PubMed  Google Scholar 

  117. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Stuht, S. et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am. J. Transplant. 7, 377–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. El-Koraie, A. F., Baddour, N. M., Adam, A. G., El Kashef, E. H. & El Nahas, A. M. Role of stem cell factor and mast cells in the progression of chronic glomerulonephritides. Kidney Int. 60, 167–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Roberts, I. S. & Brenchley, P. E. Mast cells: the forgotten cells of renal fibrosis. J. Clin. Pathol. 53, 858–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kondo, S. et al. Role of mast cell tryptase in renal interstitial fibrosis. J. Am. Soc. Nephrol. 12, 1668–1676 (2001).

    CAS  PubMed  Google Scholar 

  122. Timoshanko, J. R., Kitching, R., Semple, T. J., Tipping, P. G. & Holdsworth, S. R. A pathogenetic role for mast cells in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 17, 150–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Kanamaru, Y. et al. Mast cell-mediated remodeling and fibrinolytic activity protect against fatal glomerulonephritis. J. Immunol. 176, 5607–5615 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Miyazawa, S. et al. Role of mast cells in the development of renal fibrosis: use of mast cell-deficient rats. Kidney Int. 65, 2228–2237 (2004).

    Article  PubMed  Google Scholar 

  125. Hochegger, K. et al. Role of mast cells in experimental anti-glomerular basement membrane glomerulonephritis. Eur. J. Immunol. 35, 3074–3082 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, D. H. et al. Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int. 75, 1031–1038 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Silver, R. B. et al. Mast cells: a unique source of renin. Proc. Natl Acad. Sci. USA 101, 13607–13612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fan, Y. Y. et al. Contribution of chymase-dependent angiotensin II formation to the progression of tubulointerstitial fibrosis in obstructed kidneys in hamsters. J. Pharmacol. Sci. 111, 82–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shweke, N. et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am. J. Pathol. 173, 631–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang, L. et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int. 76, 383–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Abrass, C. K., Hansen, K. M. & Patton, B. L. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. Am. J. Pathol. 176, 839–849 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xie, P. et al. C/EBP-beta modulates transcription of tubulointerstitial nephritis antigen in obstructive uropathy. J. Am. Soc. Nephrol. 20, 807–819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ramachandra Rao, S. P. et al. Pirfenidone is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol. 20, 1765–1775 (2009).

    Article  CAS  Google Scholar 

  134. Takakuta, K. et al. Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur. J. Pharmacol. 629, 118–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Cho, M. E. & Kopp, J. B. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin. Investig. Drugs 19, 275–283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Cook, H. T. The origin of renal fibroblasts and progression of kidney disease. Am. J. Pathol. 176, 22–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Little, M. H. & Bertram, J. F. Is there such a thing as a renal stem cell? J. Am. Soc. Nephrol. 20, 2112–2117 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Hopkins, C., Li, J., Rae, F. & Little, M. H. Stem cell options for kidney disease. J. Pathol. 217, 265–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Psihogios, N. G. et al. Evaluation of tubulointerstitial lesions' severity in patients with glomerulonephritides: an NMR-based metabonomic study. J. Proteome Res. 6, 3760–3770 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Nickolas, T. L., Barasch, J. & Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 17, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Tanaka, T. et al. Urinary L-type fatty acid-binding protein can reflect renal tubulointerstitial injury. Am. J. Pathol. 174, 1203–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamamoto, T. et al. Renal L-type fatty acid—binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 18, 2894–2902 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Negishi, K. et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 73, 1374–1384 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sato, Y. et al. Urine podocyte mRNAs mark progression of renal disease. J. Am. Soc. Nephrol. 20, 1041–1052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hartono, C., Muthukumar, T. & Suthanthiran, M. Noninvasive diagnosis of acute rejection of renal allografts. Curr. Opin. Organ Transplant. 15, 35–41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ghoul, B. E. et al. Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist. Clin. J. Am. Soc. Nephrol. 5, 205–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ju, W. et al. Renal gene and protein expression signatures for prediction of kidney disease progression. Am. J. Pathol. 174, 2073–2085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jones, L. K. et al. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol. Dial. Transplant. 24, 3024–3032 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Li, Y. et al. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 1907–1918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, G. et al. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J. Biol. Chem. 284, 29050–29064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pang, M. et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 297, F996–F1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Noh, H. et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am. J. Physiol. Renal Physiol. 297, F729–F739 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Grande, M. T. et al. Targeted genomic disruption of H-ras and N-ras has no effect on early renal changes after unilateral ureteral ligation. World J. Urol. doi:10.1007/s00345-009-0399-8.

  158. Grande, M. T. et al. Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice. Kidney Int. 77, 509–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Liao, T. D. et al. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension 55, 459–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Kassiri, Z. et al. Loss of TIMP3 enhances interstitial nephritis and fibrosis. J. Am. Soc. Nephrol. 20, 1223–1235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jung, G. S. et al. The orphan nuclear receptor SHP attenuates renal fibrosis. J. Am. Soc. Nephrol. 20, 2162–2170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hewitson, T. D. et al. Endogenous relaxin is a naturally occurring modulator of experimental renal tubulointerstitial fibrosis. Endocrinology 148, 660–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Teerlink, J. R. et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373, 1429–1439 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Yuen, D. A. et al. Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism. PLoS ONE 5, e9543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Benigni, A., Morigi, M. & Remuzzi, G. Kidney regeneration. Lancet 375, 1310–1317 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Sakairi, T. et al. Nestin expression in the kidney with an obstructed ureter. Kidney Int. 72, 307–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Nguyen, T. Q. et al. CTGF inhibits BMP-7 signaling in diabetic nephropathy. J. Am. Soc. Nephrol. 19, 2098–2107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all authors whose important work could not be cited owing to space limitations. We wish to thank Dr B. Hintz and members of J. Floege's laboratory for valuable discussions. Our work described in this Review was supported by grants from the Deutsche Forschungsgemeinschaft (SFB/TRR 57), projects P14, P17 and P19 (to T. Ostendorf, J. Floege).

Author information

Authors and Affiliations

Authors

Contributions

P. Boor wrote the manuscript; P. Boor, T. Ostendorf and J. Floege contributed equally to discussing content, and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Jürgen Floege.

Ethics declarations

Competing interests

J. Floege has received speaker honoraria and grant support from Amgen. P. Boor and T. Ostendorf declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6, 643–656 (2010). https://doi.org/10.1038/nrneph.2010.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.120

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research