Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+

Abstract

Neuronal communication is mediated by Ca2+-triggered fusion of transmitter-filled synaptic vesicles with the presynaptic plasma membrane. Synaptotagmin I functions as a Ca2+ sensor that regulates exocytosis, whereas soluble N-ethylmaleimide–sensitive factor attachment protein (SNAP) receptor (SNARE) proteins in the vesicle and target membrane assemble into complexes that directly catalyze bilayer fusion. Here we report that, before the Ca2+ trigger, synaptotagmin interacts with SNARE proteins in the target membrane to halt SNARE complex assembly at a step after donor vesicles attach, or dock, to target membranes. This results in fusion complexes that, when subsequently triggered by Ca2+, drive rapid, highly efficient lipid mixing. Ca2+-independent interactions with SNAREs also predispose synaptotagmin to selectively penetrate the target membrane in response to Ca2+; we demonstrate that Ca2+–synaptotagmin must insert into the target membrane to accelerate SNARE-catalyzed fusion. These findings demonstrate that Ca2+ converts synaptotagmin from a clamp to a trigger for exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of rapid, efficient, Ca2+-triggered membrane fusion.
Figure 2: Functional trans-SNARE pairing is arrested by apo-syt.
Figure 3: Apo-syt enables docking of multiple vesicles by arresting fusion; Ca2+–syt then triggers synchronous fusion.
Figure 4: Syt and the Vc peptide synergize to increase the rate of SNARE-catalyzed fusion.
Figure 5: Dual function of syt in the regulation of SNARE-catalyzed fusion.
Figure 6: Syt must act on t-SNARE membranes to stimulate fusion.
Figure 7: t-SNAREs predispose syt to penetrate the target membrane in response to the Ca2+ signal.

Similar content being viewed by others

References

  1. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Katz, B. The Release Of Neural Transmitter Substances (Thomas, Springfield, 1969).

    Google Scholar 

  5. Llinas, R., Steinberg, I.Z. & Walton, K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–351 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabatini, B.L. & Regehr, W.G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, J.Y. & Wu, L.G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci. 26, 413–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B. & Chapman, E.R. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 929–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Sudhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed-of-response of synaptotagmin and steers its membrane penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hui, E., Bai, J. & Chapman, E.R. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91, 1767–1777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herrick, D.Z., Sterbling, S., Rasch, K.A., Hinderliter, A. & Cafiso, D.S. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668–9674 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bhalla, A., Tucker, W.C. & Chapman, E.R. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol. Biol. Cell 16, 4755–4764 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Schiavo, G., Stenbeck, G., Rothman, J.E. & Sollner, T.H. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94, 997–1001 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pobbati, A.V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Sudhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai, J., Earles, C.A., Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem. 275, 25427–25435 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Melia, T.J., You, D., Tareste, D.C. & Rothman, J.E. Lipidic antagonists to SNARE-mediated fusion. J. Biol. Chem. 281, 29597–29605 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. de Wit, H., Cornelisse, L.N., Toonen, R.F. & Verhage, M. Docking of secretory vesicles is syntaxin dependent. PLoS ONE 1, e126 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hammarlund, M., Palfreyman, M.T., Watanabe, S., Olsen, S. & Jorgensen, E.M. Open syntaxin docks synaptic vesicles. PLoS Biol. 5, e198 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wojcik, S.M. & Brose, N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron. 55, 11–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Itakura, M., Misawa, H., Sekiguchi, M., Takahashi, S. & Takahashi, M. Transfection analysis of functional roles of complexin I and II in the exocytosis of two different types of secretory vesicles. Biochem. Biophys. Res. Commun. 265, 691–696 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Monck, J.R. & Fernandez, J.M. The exocytotic fusion pore. J. Cell Biol. 119, 1395–1404 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Kozlov, M.M. & Chernomordik, L.V. The protein coat in membrane fusion: lessons from fission. Traffic 3, 256–267 (2002).

    Article  PubMed  Google Scholar 

  45. Marrink, S.J. & Mark, A.E. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J. Am. Chem. Soc. 125, 11144–11145 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Desai, R.C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125–1136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bark, I.C. & Wilson, M.C. Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139, 291–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gitler, D. et al. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J. Neurosci. 24, 11368–11380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Chapman laboratory, W. Tucker, J.M. Edwardson and M. Jackson for helpful discussions. This work was supported by the Howard Hughes Medical Institute and by grants from the American Heart Association and US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.C.C. carried out all biochemical experiments and fusion assays, and, together with E.R.C., planned all experiments and wrote the manuscript; E.H. carried out the fluorescence experiments in Figure 7; and H.L. carried out the electrophysiology and neuronal imaging experiments shown in Figure 5d–g and Supplementary Figure 3.

Corresponding author

Correspondence to Edwin R Chapman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 6620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chicka, M., Hui, E., Liu, H. et al. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat Struct Mol Biol 15, 827–835 (2008). https://doi.org/10.1038/nsmb.1463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing