Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complexin cross-links prefusion SNAREs into a zigzag array

Abstract

Complexin prevents SNAREs from releasing neurotransmitters until an action potential arrives at the synapse. To understand the mechanism for this inhibition, we determined the structure of complexin bound to a mimetic of a prefusion SNAREpin lacking the portion of the v-SNARE that zippers last to trigger fusion. The 'central helix' of complexin is anchored to one SNARE complex, while its 'accessory helix' extends away at ~45° and bridges to a second complex, occupying the vacant v-SNARE binding site to inhibit fusion. We expected the accessory helix to compete with the v-SNARE for t-SNARE binding but found instead that the interaction occurs intermolecularly. Thus, complexin organizes the SNAREs into a zigzag topology that, when interposed between the vesicle and plasma membranes, is incompatible with fusion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the prefusion CPX–SNARE complex.
Figure 2: Interacting surfaces of CPXacc and the t-SNAREs.
Figure 3: Characterization of the interaction of CPXacc with SNARE complexes by isothermal titration calorimetry.
Figure 4: FRET experiments probing CPX orientation in pre- and postfusion CPX–SNARE complexes.
Figure 5: Effects of CPX and VAMP2 mutations on clamping in cell-cell fusion assays.
Figure 6: Molecular models for CPX clamping.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  2. Palade, G.E. & Palay, S.L. Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335–336 (1954).

    Google Scholar 

  3. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  4. Hu, C. et al. Fusion of cells by flipped SNAREs. Science 300, 1745–1749 (2003).

    Article  CAS  Google Scholar 

  5. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  6. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  Google Scholar 

  7. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  8. Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Sudhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  Google Scholar 

  9. Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  CAS  Google Scholar 

  10. Fernández-Chacón, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  Google Scholar 

  11. Geppert, M. et al. Synaptotagmin I: a major Ca 2 + sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  12. Pang, Z.P., Shin, O.H., Meyer, A.C., Rosenmund, C. & Sudhof, T.C. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca 2 + -dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J. Neurosci. 26, 12556–12565 (2006).

    Article  CAS  Google Scholar 

  13. Domanska, M.K., Kiessling, V., Stein, A., Fasshauer, D. & Tamm, L.K. Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J. Biol. Chem. 284, 32158–32166 (2009).

    Article  CAS  Google Scholar 

  14. Karatekin, E. et al. A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc. Natl. Acad. Sci. USA 107, 3517–3521 (2010).

    Article  CAS  Google Scholar 

  15. Liu, T., Tucker, W.C., Bhalla, A., Chapman, E.R. & Weisshaar, J.C. SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys. J. 89, 2458–2472 (2005).

    Article  CAS  Google Scholar 

  16. Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Commun. 213, 1107–1114 (1995).

    Article  CAS  Google Scholar 

  17. McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

    Article  CAS  Google Scholar 

  18. Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  Google Scholar 

  19. Giraudo, C.G. et al. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323, 512–516 (2009).

    Article  CAS  Google Scholar 

  20. Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323, 516–521 (2009).

    Article  CAS  Google Scholar 

  21. Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis. Neuron 64, 367–380 (2009).

    Article  CAS  Google Scholar 

  22. Cho, R.W., Song, Y. & Littleton, J.T. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol. Cell Neurosci. 45, 389–397 (2010).

    Article  CAS  Google Scholar 

  23. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    Article  CAS  Google Scholar 

  24. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  Google Scholar 

  25. Hobson, R.J., Liu, Q., Watanabe, S. & Jorgensen, E.M. Complexin Maintains Vesicles in the Primed State in C. elegans. Curr. Biol. 21, 106–113 (2011).

    Article  CAS  Google Scholar 

  26. Martin, J.A., Hu, Z., Fenz, K.M., Fernandez, J. & Dittman, J.S. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr. Biol. 21, 97–105 (2011).

    Article  CAS  Google Scholar 

  27. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  28. Bracher, A., Kadlec, J., Betz, H. & Weissenhorn, W. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277, 26517–26523 (2002).

    Article  CAS  Google Scholar 

  29. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).

    Article  CAS  Google Scholar 

  30. Giraudo, C.G. et al. Distinct domains of complexins bind SNARE complexes and clamp fusion in vitro. J. Biol. Chem. 283, 21211–21219 (2008).

    Article  CAS  Google Scholar 

  31. Hua, S.Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083 (1999).

    Article  CAS  Google Scholar 

  32. Reim, K. et al. Complexins regulate a late step in Ca 2 + -dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  Google Scholar 

  33. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  Google Scholar 

  34. Lu, B., Song, S. & Shin, Y.K. Accessory alpha-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. J. Mol. Biol. 396, 602–609 (2010).

    Article  CAS  Google Scholar 

  35. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  Google Scholar 

  36. Walter, A.M., Wiederhold, K., Bruns, D., Fasshauer, D. & Sorensen, J.B. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis. J. Cell Biol. 188, 401–413 (2010).

    Article  CAS  Google Scholar 

  37. Ellena, J.F. et al. Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proc. Natl. Acad. Sci. USA 106, 20306–20311 (2009).

    Article  CAS  Google Scholar 

  38. Yang, X., Kaeser-Woo, Y.J., Pang, Z.P., Xu, W. & Sudhof, T.C. Complexin clamps asynchronous release by blocking a secondary Ca 2 + sensor via its accessory alpha helix. Neuron 68, 907–920 (2010).

    Article  CAS  Google Scholar 

  39. Pabst, S. et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275, 19808–19818 (2000).

    Article  CAS  Google Scholar 

  40. Krishnakumar, S.S. et al. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat. Struct. Mol. Biol. doi:10.1038/nsmb.2103 (2011).

  41. Kuzmin, P.I., Zimmerberg, J., Chizmadzhev, Y.A. & Cohen, F.S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA 98, 7235–7240 (2001).

    Article  CAS  Google Scholar 

  42. Chernomordik, L.V., Zimmerberg, J. & Kozlov, M.M. Membranes of the world unite! J. Cell Biol. 175, 201–207 (2006).

    Article  CAS  Google Scholar 

  43. Stein, A., Weber, G., Wahl, M.C. & Jahn, R. Helical extension of the neuronal SNARE complex into the membrane. Nature 460, 525–528 (2009).

    Article  CAS  Google Scholar 

  44. Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17, 568–575 (2010).

    Article  CAS  Google Scholar 

  45. Choi, U.B. et al. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17, 318–324 (2010).

    Article  CAS  Google Scholar 

  46. Chicka, M.C., Hui, E., Liu, H. & Chapman, E.R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca 2 + . Nat. Struct. Mol. Biol. 15, 827–835 (2008).

    Article  CAS  Google Scholar 

  47. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  Google Scholar 

  48. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  49. McCoy, A.J. et al. Phaser crystallography software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  52. Kleywegt, G.J. & Jones, T.A. Where freedom is given, liberties are taken. Structure 3, 535–540 (1995).

    Article  CAS  Google Scholar 

  53. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  54. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Springer, New York; Berlin, 2006).

Download references

Acknowledgements

We wish to thank the staffs of beamline X29 at the National Synchrotron Light Source, Brookhaven National Laboratory and of the Northeastern Collaborative Access Team (NE-CAT) facility at the Advanced Photon Source, Argonne National Laboratory, for their help in data collection; L. Khandan (Yale University) and S. Baguley (Yale University) for technical assistance; and J. Coleman (Yale University) for advice. We are grateful to E. Karatekin (Yale University) and D.W. Rodgers (University of Kentucky) for discussions regarding this manuscript. This work was supported by grants from the US National Institutes of Health to K.M.R. (R01GM080616) and to J.E.R., an Agence Nationale de la Recherche (ANR) Physique et Chimie du Vivant (PCV) grant to F.P. and a grant from the Deutsche Forschungsgemeinschaft to D.K.

Author information

Authors and Affiliations

Authors

Contributions

D.K. coordinated the experiments in this paper, was responsible for structure analysis and designed constructs for the functional analyses. S.S.K. and D.T.R. conducted the FRET experiments; F.L. conducted the ITC analysis and C.G.G. carried out the cell-cell fusion experiments. F.P. contributed to the analysis of the FRET and ITC data. D.K., J.E.R. and K.M.R. analyzed data and wrote this manuscript.

Corresponding authors

Correspondence to James E Rothman or Karin M Reinisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3 and Supplementary Methods (PDF 1031 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kümmel, D., Krishnakumar, S., Radoff, D. et al. Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 18, 927–933 (2011). https://doi.org/10.1038/nsmb.2101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing