Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog

Abstract

We report a structure of a trimeric glutamate transporter homolog from Pyrococcus horikoshii with two protomers in an inward facing state and the third in an intermediate conformation between the outward and inward facing states. The intermediate shows a cavity in the thinnest region of the transporter, which is potentially accessible to extracellular and cytoplasmic solutions. Our findings suggest a structural principle by which transport intermediates may mediate uncoupled permeation of polar solutes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the asymmetric trimer.
Figure 2: Conformational transition in the iOFS.
Figure 3: Cavity at the domain interface in the iOFS.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Danbolt, N.C. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  Google Scholar 

  2. Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P. & Amara, S.G. Nature 375, 599–603 (1995).

    Article  CAS  Google Scholar 

  3. Wadiche, J.I., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Neuron 14, 1019–1027 (1995).

    Article  CAS  Google Scholar 

  4. Arriza, J.L., Eliasof, S., Kavanaugh, M.P. & Amara, S.G. Proc. Natl. Acad. Sci. USA 94, 4155–4160 (1997).

    Article  CAS  Google Scholar 

  5. Veruki, M.L., Morkve, S.H. & Hartveit, E. Nat. Neurosci. 9, 1388–1396 (2006).

    Article  CAS  Google Scholar 

  6. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  7. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Nature 445, 387–393 (2007).

    Article  CAS  Google Scholar 

  8. Reyes, N., Ginter, C. & Boudker, O. Nature 462, 880–885 (2009).

    Article  CAS  Google Scholar 

  9. Poulsen, M.V. & Vandenberg, R.J. J. Physiol. (Lond.) 534, 159–167 (2001).

    Article  CAS  Google Scholar 

  10. Zerangue, N., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. J. Biol. Chem. 270, 6433–6435 (1995).

    Article  CAS  Google Scholar 

  11. Fairman, W.A., Sonders, M.S., Murdoch, G.H. & Amara, S.G. Nat. Neurosci. 1, 105–113 (1998).

    Article  CAS  Google Scholar 

  12. Ryan, R.M., Mitrovic, A.D. & Vandenberg, R.J. J. Biol. Chem. 279, 20742–20751 (2004).

    Article  CAS  Google Scholar 

  13. Ryan, R.M. & Mindell, J.A. Nat. Struct. Mol. Biol. 14, 365–371 (2007).

    Article  CAS  Google Scholar 

  14. Huang, S. & Vandenberg, R.J. Biochemistry 46, 9685–9692 (2007).

    Article  CAS  Google Scholar 

  15. Seal, R.P., Shigeri, Y., Eliasof, S., Leighton, B.H. & Amara, S.G. Proc. Natl. Acad. Sci. USA 98, 15324–15329 (2001).

    Article  CAS  Google Scholar 

  16. Borre, L., Kavanaugh, M.P. & Kanner, B.I. J. Biol. Chem. 277, 13501–13507 (2002).

    Article  CAS  Google Scholar 

  17. Ryan, R.M. & Vandenberg, R.J. J. Biol. Chem. 277, 13494–13500 (2002).

    Article  CAS  Google Scholar 

  18. Shachnai, L., Shimamoto, K. & Kanner, B.I. Neuropharmacology 49, 862–871 (2005).

    Article  CAS  Google Scholar 

  19. Borre, L. & Kanner, B.I. J. Biol. Chem. 276, 40396–40401 (2001).

    Article  CAS  Google Scholar 

  20. Vandenberg, R.J., Huang, S. & Ryan, R.M. Channels (Austin) 2, 51–58 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Reyes (Pasteur Institute) for assistance with the design of isothermal titration calorimetry experiments and helpful discussions. V. Chaptal (Institute of Biology and Chemistry of Proteins) is acknowledged for his help with the anisotropy correction procedure and M. Sawaya (Institute for Genomics and Proteomics, University of California, Los Angeles) for providing the suite of programs used for the anisotropy correction. We are thankful for access to beamlines X25 and X29 at the National Synchrotron Light Source. This work was supported by the National Institute of Neurological Disorders and Stroke, grant no. NS064357 to O.B.

Author information

Authors and Affiliations

Authors

Contributions

G.V. and O.B. designed the experiments, analyzed data and wrote the manuscript. G.V. conducted the experiments and collected X-ray data.

Corresponding author

Correspondence to Olga Boudker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1 and 2, Supplementary Discussion and Supplementary Methods (PDF 1620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdon, G., Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 19, 355–357 (2012). https://doi.org/10.1038/nsmb.2233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing