Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells

Abstract

The dioxin/aryl hydrocarbon receptor (AhR) is a transcription factor, which has been attributed a role in human cancerogenesis, cell cycle progression and transforming growth factor-β (TGF-β) signaling. As TGF-β is an important mediator of the malignant phenotype of human gliomas, we studied AhR expression and function in glioma cells. AhR was not only expressed in glioma cells in vitro, but was also detected in human gliomas in vivo by immunohistochemistry, with a predominantly nuclear staining in glioblastomas. The AhR agonist, 3-methylcholanthrene, induced AhR nuclear translocation and upregulated mRNA levels of the AhR target gene, cytochrome P450 1A1 (CYP1A1). Conversely, pharmacological inhibition of AhR using the novel AhR antagonist, CH-223191, or AhR gene silencing using small interfering RNA showed that constitutive AhR activity positively controls TGF-β1, TGF-β2 and latent TGF-β-binding protein-1 protein levels in malignant glioma cells. Moreover, antagonism of AhR reduced clonogenic survival and invasiveness of glioma cells. In contrast, AhR regulates TGF-β signaling negatively in non-neoplastic astrocytes. Thus, the pathogenesis of glioma formation may involve altered AhR regulation of the TGF-β/Smad pathway, and AhR may represent a promising target for the treatment of human malignant gliomas and other diseases associated with pathological TGF-β activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AhR:

aryl hydrocarbon receptor

ARNT:

AhR nuclear translocator

BrdU:

5-bromo-2-deoxyuridine

CA-AhR:

constitutive active AhR

CI:

confidence interval

CYP1A1:

cytochrome P450 1A1

DRE:

dioxin responsive element

LTBP-1:

latent TGF-β-binding protein

PAS:

Per-Arnt-Sim

pSmad2:

phosphorylated Smad2

TCDD:

2,3,7,8-tetrachlorodibenzo-p-dioxin

TGF-β:

transforming growth factor-β

3-MC:

3-methylcholanthrene

References

  • Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S et al. (2002). A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA 99: 9990–9995.

    Article  CAS  Google Scholar 

  • Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A et al. (2007). High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11: 147–160.

    Article  CAS  Google Scholar 

  • Carraro G, Albertin G, Forneris M, Nussdorfer GG . (2005). Similar sequence-free amplification of human glyceraldehyde-3-phosphate dehydrogenase for real time RT-PCR applications. Mol Cell Probes 19: 181–186.

    Article  CAS  Google Scholar 

  • Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA et al. (2007). Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 27: 6127–6139.

    Article  CAS  Google Scholar 

  • Corchero J, Martin-Partido G, Dallas SL, Fernandez-Salguero PM . (2004). Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-beta-binding protein-1. Int J Exp Pathol 85: 295–302.

    Article  CAS  Google Scholar 

  • Denison MS, Nagy SR . (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43: 309–334.

    Article  CAS  Google Scholar 

  • Elferink CJ . (2003). Aryl hydrocarbon receptor-mediated cell cycle control. Prog Cell Cycle Res 5: 261–267.

    PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.

    Article  CAS  Google Scholar 

  • Fujisawa-Sehara A, Sogawa K, Yamane M, Fujii-Kuriyama Y . (1987). Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome P-450c gene: a similarity to glucocorticoid regulatory elements. Nucleic Acids Res 15: 4179–4191.

    Article  CAS  Google Scholar 

  • Gomez-Duran A, Mulero-Navarro S, Chang X, Fernandez-Salguero PM . (2006). LTBP-1 blockade in dioxin receptor-null mouse embryo fibroblasts decreases TGF-beta activity: role of extracellular proteases plasmin and elastase. J Cell Biochem 97: 380–392.

    Article  CAS  Google Scholar 

  • Gu YZ, Hogenesch JB, Bradfield CA . (2000). The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519–561.

    Article  CAS  Google Scholar 

  • Haarmann-Stemmann T, Bothe H, Abel J . (2008). Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 77: 508–520.

    Article  Google Scholar 

  • Harper PA, Riddick DS, Okey AB . (2006). Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol 72: 267–279.

    Article  CAS  Google Scholar 

  • Huang X, Powell-Coffman JA, Jin Y . (2004). The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C elegans. Development 131: 819–828.

    Article  CAS  Google Scholar 

  • Ito T, Tsukumo S, Suzuki N, Motohashi H, Yamamoto M, Fujii-Kuriyama Y et al. (2004). A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J Biol Chem 279: 25204–25210.

    Article  CAS  Google Scholar 

  • Kim SH, Henry EC, Kim DK, Kim YH, Shin KJ, Han MS et al. (2006). Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol 69: 1871–1878.

    Article  CAS  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4: 844–847.

    Article  CAS  Google Scholar 

  • Kress S, Reichert J, Schwarz M . (1998). Functional analysis of the human cytochrome P4501A1 (CYP1A1) gene enhancer. Eur J Biochem 258: 803–812.

    Article  CAS  Google Scholar 

  • Lahvis GP, Lindell SL, Thomas RS, McCuskey RS, Murphy C, Glover E et al. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc Natl Acad Sci USA 97: 10442–10447.

    Article  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97–109.

    Article  Google Scholar 

  • Maier MS, Legare ME, Hanneman WH . (2007). The aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl induces distinct patterns of gene expression between hepatoma and glioma cells: chromatin remodeling as a mechanism for selective effects. Neurotoxicology 28: 594–612.

    Article  CAS  Google Scholar 

  • Marlowe JL, Puga A . (2005). Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96: 1174–1184.

    Article  CAS  Google Scholar 

  • Mason GG, Witte AM, Whitelaw ML, Antonsson C, McGuire J, Wilhelmsson A et al. (1994). Purification of the DNA binding form of dioxin receptor. Role of the Arnt cofactor in regulation of dioxin receptor function. J Biol Chem 269: 4438–4449.

    CAS  Google Scholar 

  • McGuire J, Okamoto K, Whitelaw ML, Tanaka H, Poellinger L . (2001). Definition of a dioxin receptor mutant that is a constitutive activator of transcription: delineation of overlapping repression and ligand binding functions within the PAS domain. J Biol Chem 276: 41841–41849.

    Article  CAS  Google Scholar 

  • Mimura J, Fujii-Kuriyama Y . (2003). Xenobiotics and transcriptional regulation. Biochim Biophys Acta 1619: 263–268.

    Article  CAS  Google Scholar 

  • Miyazono K, Suzuki H, Imamura T . (2003). Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 94: 230–234.

    Article  CAS  Google Scholar 

  • Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L et al. (2004). A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64: 4707–4710.

    Article  CAS  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. (2004). Genetic pathways to glioblastoma: a population-based study. Cancer Res 64: 6892–6899.

    Article  CAS  Google Scholar 

  • Ohtake F, Baba A, Fujii-Kuriyama Y, Kato S . (2008). Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem Biophys Res Commun 370: 541–546.

    Article  CAS  Google Scholar 

  • Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H et al. (2007). Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446: 562–566.

    Article  CAS  Google Scholar 

  • Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K et al. (2003). Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423: 545–550.

    Article  CAS  Google Scholar 

  • Poland A, Glover E, Kende AS . (1976). Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251: 4936–4946.

    CAS  PubMed  Google Scholar 

  • Poland A, Knutson JC . (1982). Response of murine epidermis to 2,3,7,8-tetrachlorodibenzo-p-dioxin: interaction of the ah and hr loci. Annu Rev Pharmacol Toxicol 22: 517–554.

    Article  CAS  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al. (2008). Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453: 65–71.

    Article  CAS  Google Scholar 

  • Santiago-Josefat B, Mulero-Navarro S, Dallas SL, Fernandez-Salguero PM . (2004). Overexpression of latent transforming growth factor-beta binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. J Cell Sci 117: 849–859.

    Article  CAS  Google Scholar 

  • Schittenhelm J, Mittelbronn M, Nguyen TD, Meyermann R, Beschorner R . (2008). WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes. Brain Pathol 18: 344–353.

    Article  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    Article  CAS  Google Scholar 

  • Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J et al. (2000). Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 97: 779–782.

    Article  CAS  Google Scholar 

  • Tritschler I, Gramatzki D, Capper D, Mittelbronn M, Meyermann R, Saharinen J et al. (2009). Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells. Int J Cancer (in press).

  • Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R et al. (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64: 7954–7961.

    Article  CAS  Google Scholar 

  • Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC et al. (2008). The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453: 106–109.

    Article  CAS  Google Scholar 

  • Weller M, Fontana A . (1995). The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res Brain Res Rev 21: 128–151.

    Article  CAS  Google Scholar 

  • Wick W, Platten M, Weller M . (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53: 177–185.

    Article  CAS  Google Scholar 

  • Wolff S, Harper PA, Wong JM, Mostert V, Wang Y, Abel J . (2001). Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor-beta(1). Mol Pharmacol 59: 716–724.

    Article  CAS  Google Scholar 

  • Zaher H, Fernandez-Salguero PM, Letterio J, Sheikh MS, Fornace Jr AJ, Roberts AB et al. (1998). The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-beta and apoptosis. Mol Pharmacol 54: 313–321.

    Article  CAS  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1: 611–617.

    Article  CAS  Google Scholar 

  • Zudaire E, Cuesta N, Murty V, Woodson K, Adams L, Gonzalez N et al. (2008). The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J Clin Invest 118: 640–650.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Gabrielle Haas for support with confocal microscopy. This study was supported by grants from the Jacqueline Seroussi Memorial Foundation for Cancer Research and the Swiss National Fund (NCCR Neuro) to MW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Weller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramatzki, D., Pantazis, G., Schittenhelm, J. et al. Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells. Oncogene 28, 2593–2605 (2009). https://doi.org/10.1038/onc.2009.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.104

Keywords

This article is cited by

Search

Quick links