Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LKB1 is required for adiponectin-mediated modulation of AMPK–S6K axis and inhibition of migration and invasion of breast cancer cells

Abstract

Adiponectin is widely known as an adipocytokine with therapeutic potential for its markedly protective function in the pathogenesis of obesity-related disorders, metabolic syndrome, systemic insulin resistance, cardiovascular disease and more recently carcinogenesis. In the present study, we show that adiponectin inhibits adhesion, invasion and migration of breast cancer cells. Further analysis of the underlying molecular mechanisms revealed that adiponectin treatment increased AMP-activated protein kinase (AMPK) phosphorylation and activity as evident by increased phosphorylation of downstream target of AMPK, acetyl-coenzyme A carboxylase and inhibition of p70S6 kinase (S6K). Intriguingly, we discovered that adiponectin treatment increases the expression of tumor suppressor gene LKB1 in breast cancer cells. Overexpression of LKB1 in breast cancer cells further increased adiponectin-mediated phosphorylation of AMPK. Using isogenic LKB1 knockdown cell line pair, we found that LKB1 is required for adiponectin-mediated modulation of AMPK–S6K axis and more importantly, inhibition of adhesion, migration and invasion of breast cancer cells. Taken together these data present a novel mechanism involving specific upregulation of tumor suppressor gene LKB1 by which adiponectin inhibits adhesion, invasion and migration of breast cancer cells. Our findings indicate the possibility of using adiponectin analogues to inhibit invasion and migration of breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). LKB1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  Google Scholar 

  • Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE et al. (2009). Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8: 909–915.

    Article  CAS  Google Scholar 

  • Arditi JD, Venihaki M, Karalis KP, Chrousos GP . (2007). Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal link between obesity and cancer. Horm Metab Res 39: 9–13.

    Article  CAS  Google Scholar 

  • Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA et al. (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22: 3062–3072.

    Article  CAS  Google Scholar 

  • Barb D, Pazaitou-Panayiotou K, Mantzoros CS . (2006). Adiponectin: a link between obesity and cancer. Expert Opin Investig Drugs 15: 917–931.

    Article  CAS  Google Scholar 

  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE . (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7: 947–953.

    Article  CAS  Google Scholar 

  • Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M et al. (2003). MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22: 5102–5114.

    Article  CAS  Google Scholar 

  • Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D et al. (2004). Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci 117: 6365–6375.

    Article  CAS  Google Scholar 

  • Cacicedo JM, Yagihashi N, Keaney Jr JF, Ruderman NB, Ido Y . (2004). AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun 324: 1204–1209.

    Article  CAS  Google Scholar 

  • Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348: 1625–1638.

    Article  Google Scholar 

  • Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY et al. (2006). Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett 237: 109–114.

    Article  CAS  Google Scholar 

  • Chen MB, McAinch AJ, Macaulay SL, Castelli LA, O'Brien P E, Dixon JB et al. (2005). Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab 90: 3665–3672.

    Article  CAS  Google Scholar 

  • Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL . (2001). Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer 92: 720–729.

    Article  CAS  Google Scholar 

  • Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R . (2006). Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345: 271–279.

    Article  CAS  Google Scholar 

  • Dos Santos E, Benaitreau D, Dieudonne MN, Leneveu MC, Serazin V, Giudicelli Y et al. (2008). Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep 20: 971–977.

    CAS  PubMed  Google Scholar 

  • Fantuzzi G . (2005). Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115: 911–919; quiz 920.

    Article  CAS  Google Scholar 

  • Fenton H, Carlile B, Montgomery EA, Carraway H, Herman J, Sahin F et al. (2006). LKB1 protein expression in human breast cancer. Appl Immunohistochem Mol Morphol 14: 146–153.

    Article  CAS  Google Scholar 

  • Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT et al. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98: 2005–2010.

    Article  CAS  Google Scholar 

  • Goldstein BJ, Scalia R . (2004). Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89: 2563–2568.

    Article  CAS  Google Scholar 

  • Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP . (2008). Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer 98: 370–379.

    Article  CAS  Google Scholar 

  • Hardie DG . (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117: 5479–5487.

    Article  CAS  Google Scholar 

  • Hardie DG . (2005). New roles for the LKB1-> AMPK pathway. Curr Opin Cell Biol 17: 167–173.

    Article  CAS  Google Scholar 

  • Hezel AF, Bardeesy N . (2008). LKB1; linking cell structure and tumor suppression. Oncogene 27: 6908–6919.

    Article  CAS  Google Scholar 

  • Hu E, Liang P, Spiegelman BM . (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271: 10697–10703.

    Article  CAS  Google Scholar 

  • Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF . (2004). T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 101: 10308–10313.

    Article  CAS  Google Scholar 

  • Jarde T, Caldefie-Chezet F, Damez M, Mishellany F, Perrone D, Penault-Llorca F et al. (2008). Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology 53: 484–487.

    Article  CAS  Google Scholar 

  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. (1998). Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18: 38–43.

    Article  CAS  Google Scholar 

  • Kelesidis I, Kelesidis T, Mantzoros CS . (2006). Adiponectin and cancer: a systematic review. Br J Cancer 94: 1221–1225.

    Article  CAS  Google Scholar 

  • Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A et al. (2007). Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab 92: 1041–1048.

    Article  Google Scholar 

  • Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT et al. (2008). Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis 29: 2195–2202.

    Article  CAS  Google Scholar 

  • Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP et al. (2005a). Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309: 99–109.

    Article  CAS  Google Scholar 

  • Luo Z, Saha AK, Xiang X, Ruderman NB . (2005b). AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26: 69–76.

    Article  CAS  Google Scholar 

  • Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D et al. (2005). Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 111: 747–753.

    Article  CAS  Google Scholar 

  • Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K . (1996). cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochem Biophys Res Commun 221: 286–289.

    Article  CAS  Google Scholar 

  • Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM et al. (2004). Adiponectin and breast cancer risk. J Clin Endocrinol Metab 89: 1102–1107.

    Article  CAS  Google Scholar 

  • Martin DE, Hall MN . (2005). The expanding TOR signaling network. Curr Opin Cell Biol 17: 158–166.

    Article  CAS  Google Scholar 

  • Matsuzawa Y, Funahashi T, Kihara S, Shimomura I . (2004). Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24: 29–33.

    Article  CAS  Google Scholar 

  • Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y et al. (2003). Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res 9: 5699–5704.

    CAS  PubMed  Google Scholar 

  • Motoshima H, Goldstein BJ, Igata M, Araki E . (2006). AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574: 63–71.

    Article  CAS  Google Scholar 

  • Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M . (1996). Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 120: 803–812.

    Article  CAS  Google Scholar 

  • Nakayama S, Miyoshi Y, Ishihara H, Noguchi S . (2008). Growth-inhibitory effect of adiponectin via adiponectin receptor 1 on human breast cancer cells through inhibition of S-phase entry without inducing apoptosis. Breast Cancer Res Treat 112: 405–410.

    Article  CAS  Google Scholar 

  • Petrelli JM, Calle EE, Rodriguez C, Thun MJ . (2002). Body mass index, height, and postmenopausal breast cancer mortality in a prospective cohort of US women. Cancer Causes Control 13: 325–332.

    Article  Google Scholar 

  • Phoenix KN, Vumbaca F, Claffey KP . (2009). Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 113: 101–111.

    Article  CAS  Google Scholar 

  • Rose DP, Komninou D, Stephenson GD . (2004). Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5: 153–165.

    Article  CAS  Google Scholar 

  • Ruvinsky I, Meyuhas O . (2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31: 342–348.

    Article  CAS  Google Scholar 

  • Sapkota GP, Boudeau J, Deak M, Kieloch A, Morrice N, Alessi DR . (2002). Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J 362: 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR et al. (2001). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell growth. J Biol Chem 276: 19469–19482.

    Article  CAS  Google Scholar 

  • Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D et al. (2007a). Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67: 2497–2507.

    Article  CAS  Google Scholar 

  • Saxena NK, Taliaferro-Smith L, Knight BB, Merlin D, Anania FA, O'Regan RM et al. (2008). Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res 68: 9712–9722.

    Article  CAS  Google Scholar 

  • Saxena NK, Vertino PM, Anania FA, Sharma D . (2007b). Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J Biol Chem 282: 13316–13325.

    Article  CAS  Google Scholar 

  • Schaffler A, Scholmerich J, Buechler C . (2007). Mechanisms of disease: adipokines and breast cancer—endocrine and paracrine mechanisms that connect adiposity and breast cancer. Nat Clin Pract Endocrinol Metab 3: 345–354.

    Article  Google Scholar 

  • Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF . (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270: 26746–26749.

    Article  CAS  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329–3335.

    Article  CAS  Google Scholar 

  • Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM . (2002). The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res 8: 2085–2090.

    CAS  PubMed  Google Scholar 

  • Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H et al. (2003). Adiponectin and protection against type 2 diabetes mellitus. Lancet 361: 226–228.

    Article  CAS  Google Scholar 

  • Steeg PS, Theodorescu D . (2008). Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5: 206–219.

    Article  CAS  Google Scholar 

  • Swarbrick MM, Havel PJ . (2008). Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord 6: 87–102.

    Article  CAS  Google Scholar 

  • Takahata C, Miyoshi Y, Irahara N, Taguchi T, Tamaki Y, Noguchi S . (2007). Demonstration of adiponectin receptors 1 and 2 mRNA expression in human breast cancer cells. Cancer Lett 250: 229–236.

    Article  CAS  Google Scholar 

  • Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP . (2002). Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum Mol Genet 11: 1497–1504.

    Article  CAS  Google Scholar 

  • Vona-Davis L, Rose DP . (2007). Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 14: 189–206.

    Article  CAS  Google Scholar 

  • Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL et al. (2006). Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 66: 11462–11470.

    Article  CAS  Google Scholar 

  • Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ et al. (2005). Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280: 18341–18347.

    Article  CAS  Google Scholar 

  • Witters LA, Kemp BE, Means AR . (2006). Chutes and Ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 31: 13–16.

    Article  CAS  Google Scholar 

  • Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ . (2003). The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112: 91–100.

    Article  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. (2003a). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762–769.

    Article  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8: 1288–1295.

    Article  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K et al. (2003b). Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 278: 2461–2468.

    Article  CAS  Google Scholar 

  • Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB . (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55: 2562–2570.

    Article  CAS  Google Scholar 

  • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66: 10269–10273.

    Article  CAS  Google Scholar 

  • Zhong D, Liu X, Khuri FR, Sun SY, Vertino PM, Zhou W . (2008). LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer Res 68: 7270–7277.

    Article  CAS  Google Scholar 

  • Zhuang Y, Miskimins WK . (2008). Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 3: 18.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH LRP (grant to LTS), NIDDK NIH (K01DK076742 to NKS), NCI NIH (5P01CA116676-030002 to WZ), NCI NIH (R01CA131294 to DS), Wilbur and Hilda Glenn Foundation (grant to DS), CDMRP BCRP (grant BC030963 to DS), The Susan G Komen for the Cure (grant BCTR0503526 to DS), Emory University Research Council (DS), BJ Foundation (DS) and Mary K Ash Foundation (research grant to DS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N K Saxena or D Sharma.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taliaferro-Smith, L., Nagalingam, A., Zhong, D. et al. LKB1 is required for adiponectin-mediated modulation of AMPK–S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28, 2621–2633 (2009). https://doi.org/10.1038/onc.2009.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.129

Keywords

This article is cited by

Search

Quick links