Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer

Abstract

Deletion of 11q23–q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n=11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P=0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2′-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Baffa R, Negrini M, Mandes B, Rugge M, Ranzani GN, Hirohashi S et al. (1996). Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach. Cancer Res 56: 268–272.

    CAS  PubMed  Google Scholar 

  • Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P . (2006). Hyaluronan–CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281: 14026–14040.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2009). How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9: 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Dotto GP . (2008). Notch tumor suppressor function. Oncogene 27: 5115–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. (2005). Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102: 15785–15790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Chikumi H, Gutkind JS . (2000). Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 485: 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Gabra H, Watson JE, Taylor KJ, Mackay J, Leonard RC, Steel CM et al. (1996). Definition and refinement of a region of loss of heterozygosity at 11q23.3–q24.3 in epithelial ovarian cancer associated with poor prognosis. Cancer Res 56: 950–954.

    CAS  PubMed  Google Scholar 

  • Harris BZ, Lim WA . (2001). Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114: 3219–3231.

    CAS  PubMed  Google Scholar 

  • Hui AB, Lo KW, Leung SF, Choi PH, Fong Y, Lee JC et al. (1996). Loss of heterozygosity on the long arm of chromosome 11 in nasopharyngeal carcinoma. Cancer Res 56: 3225–3229.

    CAS  PubMed  Google Scholar 

  • Jain AN, Tokuyasu TA, Snijders AM, Segraves R, Albertson DG, Pinkel D . (2002). Fully automatic quantification of microarray image data. Genome Res 12: 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koreth J, Bakkenist CJ, Larin Z, Hunt NC, James MR, McGee JO . (1999). 11q23.1 and 11q25-qter YACs suppress tumour growth in vivo. Oncogene 18: 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Koreth J, Bakkenist CJ, McGee JO . (1997). Allelic deletions at chromosome 11q22–q23.1 and 11q25-qterm are frequent in sporadic breast but not colorectal cancers. Oncogene 14: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS et al. (2000). Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 97: 2145–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27: 427–430.

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT et al. (2003). Founder mutation in the BRCA1 gene in Malay breast cancer patients from Singapore. Hum Mutat 22: 178.

    Article  PubMed  Google Scholar 

  • Lee AS, Rudduck-Sivaswaren C, Khun-Hong Lie D, Li-Ming Chua C, Tien SL, Morsberger L et al. (2004). Overlapping deletion regions at 11q23 in myelodysplastic syndrome and chronic lymphocytic leukemia, characterized by a novel BAC probe set. Cancer Genet Cytogenet 153: 151–157.

    Article  Google Scholar 

  • Lee AS, Seo YC, Chang A, Tohari S, Eu KW, Seow-Choen F et al. (2000). Detailed deletion mapping at chromosome 11q23 in colorectal carcinoma. Br J Cancer 83: 750–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP et al. (1998). NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell 95: 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Martin ES, Cesari R, Pentimalli F, Yoder K, Fishel R, Himelstein AL et al. (2003). The BCSC-1 locus at chromosome 11q23–q24 is a candidate tumor suppressor gene. Proc Natl Acad Sci USA 100: 11517–11522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K et al. (2002). Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 62: 3636–3640.

    CAS  PubMed  Google Scholar 

  • Murakami Y, Nobukuni T, Tamura K, Maruyama T, Sekiya T, Arai Y et al. (1998). Localization of tumor suppressor activity important in non small cell lung carcinoma on chromosome 11q. Proc Natl Acad Sci USA 95: 8153–8158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini M, Rasio D, Hampton GM, Sabbioni S, Rattan S, Carter SL et al. (1995). Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 11q23.3. Cancer Res 55: 3003–3007.

    CAS  PubMed  Google Scholar 

  • Negrini M, Sabbioni S, Possati L, Rattan S, Corallini A, Barbanti-Brodano G et al. (1994). Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res 54: 1331–1336.

    CAS  PubMed  Google Scholar 

  • Plass C . (2002). Cancer epigenomics. Hum Mol Genet 11: 2479–2488.

    Article  CAS  PubMed  Google Scholar 

  • Pulido HA, Fakruddin MJ, Chatterjee A, Esplin ED, Beleno N, Martinez G et al. (2000). Identification of a 6-cM minimal deletion at 11q23.1–23.2 and exclusion of PPP2R1B gene as a deletion target in cervical cancer. Cancer Res 60: 6677–6682.

    CAS  PubMed  Google Scholar 

  • Radtke F, Raj K . (2003). The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3: 756–767.

    Article  CAS  PubMed  Google Scholar 

  • Rasio D, Negrini M, Manenti G, Dragani TA, Croce CM . (1995). Loss of heterozygosity at chromosome 11q in lung adenocarcinoma: identification of three independent regions. Cancer Res 55: 3988–3991.

    CAS  PubMed  Google Scholar 

  • Rice KL, Hormaeche I, Licht JD . (2007). Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 26: 6697–6714.

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Coleman A, Lugo TG . (1996). A malignant melanoma tumor suppressor on human chromosome 11. Cancer Res 56: 4487–4492.

    CAS  PubMed  Google Scholar 

  • Rossman KL, Der CJ, Sondek J . (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6: 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Shilatifard A . (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75: 243–269.

    Article  CAS  PubMed  Google Scholar 

  • Siderovski DP, Strockbine B, Behe CI . (1999). Whither goest the RGS proteins? Crit Rev Biochem Mol Biol 34: 215–251.

    Article  CAS  PubMed  Google Scholar 

  • Smietana K, Kasztura M, Paduch M, Derewenda U, Derewenda ZS, Otlewski J . (2008). Degenerate specificity of PDZ domains from RhoA-specific nucleotide exchange factors PDZRhoGEF and LARG. Acta Biochim Pol 55: 269–280.

    CAS  PubMed  Google Scholar 

  • Swiercz JM, Kuner R, Behrens J, Offermanns S . (2002). Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35: 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Taya S, Inagaki N, Sengiku H, Makino H, Iwamatsu A, Urakawa I et al. (2001). Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol 155: 809–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting AH, McGarvey KM, Baylin SB . (2006). The cancer epigenome—components and functional correlates. Genes Dev 20: 3215–3231.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson IP, Nicolai H, Solomon E, Bodmer WF . (1996). The frequency and mechanism of loss of heterozygosity on chromosome 11q in breast cancer. J Pathol 180: 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson IP, Strickland JE, Lee AS, Bromley L, Evans MF, Morton J et al. (1995). Loss of heterozygosity on chromosome 11 q in breast cancer. J Clin Pathol 48: 424–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C . (1997). Rho GTPases and signaling networks. Genes Dev 11: 2295–2322.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead IP, Campbell S, Rossman KL, Der CJ . (1997). Dbl family proteins. Biochim Biophys Acta 1332: F1–23.

    CAS  PubMed  Google Scholar 

  • Yamada T, Ohoka Y, Kogo M, Inagaki S . (2005). Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J Biol Chem 280: 19358–19363.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Glenn Koh for assistance with review of case notes; YC Seo, Angela Chang, S Tohari, Irene HK Lim and Gan Yar Chze for excellent technical assistance; and Dr Eric Yap for helpful discussions. This study was supported by Grants from the National Medical Research Council (NMRC) of Singapore (NMRC/0076/1995, NMRC/0440/2000, NMRC/0570/2001, NMRC/0843/2004); SingHealth Foundation (SHF/FG235P/2005); the Singapore Cancer Society, SGH Research Fund, Cancer Research Education Fund, NCC and Department of Clinical Research, SGH, to AL. We gratefully acknowledge the grant support from the US Department of Energy under Contract No. DE-AC02-05CH11231, USAMRMC BC 061995; National Institutes of Health, National Cancer Institute (P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24 CA 126477 P01 CA 64602); National Human Genome Research Institute (U24 CA 126551) and SmithKline Beecham Corporation, to JWG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S G Lee.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, D., Ho, Y., Rudduck, C. et al. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer. Oncogene 28, 4189–4200 (2009). https://doi.org/10.1038/onc.2009.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.266

Keywords

This article is cited by

Search

Quick links