Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma

Abstract

Epidermal growth factor receptor (EGFR)vIII is the most common EGFR mutant found in glioblastoma (GBM). EGFRvIII does not bind ligand, is highly oncogenic and is usually coexpressed with EGFR wild type (EGFRwt). EGFRvIII activates Met, and Met contributes to EGFRvIII-mediated oncogenicity and resistance to treatment. Here, we report that addition of EGF results in a rapid loss of EGFRvIII-driven Met phosphorylation in glioma cells. Met is associated with EGFRvIII in a physical complex. Addition of EGF results in a dissociation of the EGFRvIII–Met complex with a concomitant loss of Met phosphorylation. Consistent with the abrogation of Met activation, addition of EGF results in the inhibition of EGFRvIII-mediated resistance to chemotherapy. Thus, our study suggests that ligand in the milieu of EGFRvIII-expressing GBM cells is likely to influence the EGFRvIII–Met interaction and resistance to treatment, and highlights a novel antagonistic interaction between EGFRwt and EGFRvIII in glioma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Huang PH, Xu AM, White FM . Oncogenic EGFR signaling networks in glioma. Sci Signal 2009; 2: re6.

    PubMed  Google Scholar 

  2. Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  4. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005; 11: 1462–1466.

    Article  CAS  Google Scholar 

  5. Pedersen MW, Meltorn M, Damstrup L, Poulsen HS . The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 2001; 12: 745–760.

    Article  CAS  Google Scholar 

  6. Lorimer IA . Mutant epidermal growth factor receptors as targets for cancer therapy. Curr Cancer Drug Targets 2002; 2: 91–102.

    Article  CAS  Google Scholar 

  7. Hatanpaa KJ, Burma S, Zhao D, Habib AA . Epidermal growth factor receptor (EGFR) in glioma: Signal transduction, neuropathology, imaging and radioresistance. Neoplasia 2010; 12: 675–684.

    Article  CAS  Google Scholar 

  8. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007; 21: 2683–2710.

    Article  CAS  Google Scholar 

  9. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM . Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15: 2207–2214.

    Article  CAS  Google Scholar 

  10. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM et al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J 2002; 16: 108–110.

    Article  CAS  Google Scholar 

  11. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 2007; 67: 4408–4417.

    Article  CAS  Google Scholar 

  12. Garnett J, Chumbalkar V, Vaillant B, Gururaj AE, Hill KS, Latha K et al. Regulation of HGF expression by DeltaEGFR-mediated c-Met activation in glioblastoma cells. Neoplasia 2013; 15: 73–84.

    Article  CAS  Google Scholar 

  13. Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z et al. Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung cancer cells. Oncogene 2010; 29: 2616–2627.

    Article  CAS  Google Scholar 

  14. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC . Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 2000; 275: 8806–8811.

    Article  CAS  Google Scholar 

  15. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 2007; 104: 12867–12872.

    Article  CAS  Google Scholar 

  16. Chumbalkar V, Latha K, Hwang Y, Maywald R, Hawley L, Sawaya R et al. Analysis of phosphotyrosine signaling in glioblastoma identifies STAT5 as a novel downstream target of DeltaEGFR. J Proteome Res 2011; 10: 1343–1352.

    Article  CAS  Google Scholar 

  17. Karpel-Massler G, Schmidt U, Unterberg A, Halatsch ME . Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res 2009; 7: 1000–1012.

    Article  CAS  Google Scholar 

  18. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  Google Scholar 

  19. Li L, Chakraborty S, Yang C–R, Hatanpaa KJ, Cipher DJ, Puliyappadamba VT et al. An EGFR wild type–EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII. Oncogene 2014; 33: 4253–4264..

    Article  CAS  Google Scholar 

  20. Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol (Berl) 1998; 96: 322–328.

    Article  CAS  Google Scholar 

  21. Tang P, Steck PA, Yung WK . The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 1997; 35: 303–314.

    Article  CAS  Google Scholar 

  22. Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 2006; 66: 867–874.

    Article  CAS  Google Scholar 

  23. Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H . Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 2004; 14: 131–136.

    Article  CAS  Google Scholar 

  24. Nishikawa R, Sugiyama T, Narita Y, Furnari F, Cavenee WK, Matsutani M . Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma. Brain Tumor Pathol 2004; 21: 53–56.

    Article  CAS  Google Scholar 

  25. Puliyappadamba VT, Chakraborty S, Chauncey SS, Li L, Hatanpaa KJ, Mickey B et al. Opposing Effect of EGFRWT on EGFRvIII-Mediated NF-kappaB Activation with RIP1 as a Cell Death Switch. Cell Rep 2013; 4: 764–775.

    Article  CAS  Google Scholar 

  26. Dulak AM, Gubish CT, Stabile LP, Henry C, Siegfried JM . HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30: 3625–3635.

    Article  CAS  Google Scholar 

  27. Wang X, Dong Y, Jiwani AJ, Zou Y, Pastor J, Kuro OM et al. Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions. Proteome Sci 2011; 9: 53.

    Article  Google Scholar 

  28. Inda MD, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    Article  CAS  Google Scholar 

  29. Luwor RB, Zhu HJ, Walker F, Vitali AA, Perera RM, Burgess AW et al. The tumor-specific de2-7 epidermal growth factor receptor (EGFR) promotes cells survival and heterodimerizes with the wild-type EGFR. Oncogene 2004; 23: 6095–6104.

    Article  CAS  Google Scholar 

  30. Hwang Y, Chumbalkar V, Latha K, Bogler O . Forced dimerization increases the activity of DeltaEGFR/EGFRvIII and enhances its oncogenicity. Mol Cancer Res 2011; 9: 1199–1208.

    Article  CAS  Google Scholar 

  31. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  Google Scholar 

  32. Zhang Y, Farenholtz KE, Yang Y, Guessous F, Dipierro CG, Calvert VS et al. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition. Clin Cancer Res 2013; 19: 1433–1444.

    Article  CAS  Google Scholar 

  33. Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK . Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 2004; 23: 4594–4602.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant RO1NS062080 to AAH and by RO1 CA139217 to DAB. SB is supported by grants from the National Institutes of Health (RO1 CA149461), National Aeronautics and Space Administration (NNX13AI13G) and the Cancer Prevention and Research Institute of Texas (RP100644). This work was also supported by the Office of Medical Research, Departments of Veterans Affairs (RFS) and the National Institutes of Health (R01-DK63621, R01-CA134571 to RFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Habib.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Puliyappadamba, V., Chakraborty, S. et al. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene 34, 129–134 (2015). https://doi.org/10.1038/onc.2013.534

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.534

Keywords

This article is cited by

Search

Quick links