Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival

Abstract

The histone demethylase JMJD1A, which controls gene expression by epigenetic regulation of H3K9 methylation marks, functions in diverse activities, including spermatogenesis, metabolism and stem cell self-renewal and differentiation. Here, we found that JMJD1A knockdown in prostate cancer cells antagonizes their proliferation and survival. Profiling array analyses revealed that JMJD1A-dependent genes function in cellular growth, proliferation and survival, and implicated that the c-Myc transcriptional network is deregulated following JMJD1A inhibition. Biochemical analyses confirmed that JMJD1A enhances c-Myc transcriptional activity by upregulating c-Myc expression levels. Mechanistically, JMJD1A activity promoted recruitment of androgen receptor (AR) to the c-Myc gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA. In parallel, we found that JMJD1A regulated c-Myc stability, likely by inhibiting HUWE1, an E3 ubiquitin ligase known to target degradation of several substrates including c-Myc. JMJD1A (wild type or mutant lacking histone demethylase activity) bound to HUWE1, attenuated HUWE1-dependent ubiquitination and subsequent degradation of c-Myc, increasing c-Myc protein levels. Furthermore, c-Myc knockdown in prostate cancer cells phenocopied effects of JMJD1A knockdown, and c-Myc re-expression in JMJD1A-knockdown cells partially rescued prostate cancer cell growth in vitro and in vivo. c-Myc protein levels were positively correlated with those of JMJD1A in a subset of human prostate cancer specimens. Collectively, our findings identify a critical role for JMJD1A in regulating proliferation and survival of prostate cancer cells by controlling c-Myc expression at transcriptional and post-translational levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125: 483–495.

    Article  CAS  PubMed  Google Scholar 

  2. Goda S, Isagawa T, Chikaoka Y, Kawamura T, Aburatani H . Control of histone H3 lysine 9 (H3K9) methylation state via cooperative two-step demethylation by Jumonji domain containing 1A (JMJD1A) homodimer. J Biol Chem 2013; 288: 36948–36956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 2013; 341: 1106–1109.

    Article  CAS  PubMed  Google Scholar 

  4. Tateishi K, Okada Y, Kallin EM, Zhang Y . Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009; 458: 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y . Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450: 119–123.

    Article  CAS  PubMed  Google Scholar 

  6. Loh YH, Zhang W, Chen X, George J, Ng HH . Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007; 21: 2545–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  8. Mitsiades N . A road map to comprehensive androgen receptor axis targeting for castration-resistant prostate cancer. Cancer Res 2013; 73: 4599–4605.

    Article  CAS  PubMed  Google Scholar 

  9. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 2013; 23: 35–47.

    Article  CAS  PubMed  Google Scholar 

  10. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011; 20: 457–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 2010; 18: 23–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parimi V, Goyal R, Poropatich K, Yang XJ . Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol [Review] 2014; 2: 273–285.

    Google Scholar 

  13. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ . Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 2010; 30: 344–353.

    Article  CAS  PubMed  Google Scholar 

  14. Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N et al. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget 2014; 5: 1793–1804.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park SJ, Kim JG, Son TG, Yi JM, Kim ND, Yang K et al. The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Biochem Biophys Res Commun 2013; 434: 722–727.

    Article  CAS  PubMed  Google Scholar 

  16. Parrish JK, Sechler M, Winn RA, Jedlicka P . The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing Sarcoma. Oncogene 2015; 34: 257–262.

    Article  CAS  PubMed  Google Scholar 

  17. Osawa T, Tsuchida R, Muramatsu M, Shimamura T, Wang F, Suehiro J et al. Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages. Cancer Res 2013; 73: 3019–3028.

    Article  CAS  PubMed  Google Scholar 

  18. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gil J, Kerai P, Lleonart M, Bernard D, Cigudosa JC, Peters G et al. Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res 2005; 65: 2179–2185.

    Article  CAS  PubMed  Google Scholar 

  20. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  21. Cho H, Herzka T, Zheng W, Qi J, Wilkinson JE, Bradner JE et al. RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis. Cancer Discov 2014; 4: 318–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Kobayashi T, Floc'h N, Kinkade CW, Aytes A, Dankort D et al. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res 2012; 72: 4765–4776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, Abdulkadir SA . A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 2012; 31: 322–332.

    Article  CAS  PubMed  Google Scholar 

  24. Hawksworth D, Ravindranath L, Chen Y, Furusato B, Sesterhenn IA, McLeod DG et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis 2010; 13: 311–315.

    Article  CAS  PubMed  Google Scholar 

  25. Rye MB, Bertilsson H, Drablos F, Angelsen A, Bathen TF, Tessem MB . Gene signatures ESC, MYC and ERG-fusion are early markers of a potentially dangerous subtype of prostate cancer. BMC Med Genomics 2014; 7: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21: 1156–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM . MYC and prostate cancer. Genes Cancer 2010; 1: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sotelo J, Esposito D, Duhagon MA, Banfield K, Mehalko J, Liao H et al. Long-range enhancers on 8q24 regulate c-Myc. Proc Natl Acad Sci USA 2010; 107: 3001–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 2009; 16: 336–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W . ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121: 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Lu G, Li L, Yi J, Yan K, Wang Y et al. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2014; 444: 549–554.

    Article  CAS  PubMed  Google Scholar 

  33. Zhong Q, Gao W, Du F, Wang X . Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  34. Vaughan L, Tan CT, Chapman A, Nonaka D, Mack NA, Smith D et al. HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell-cell adhesion disassembly, migration, and invasion. Cell Rep 2015; 10: 88–102.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 2008; 10: 643–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J et al. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev 2013; 27: 1101–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI . Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2011; 2: 162.

    Article  PubMed  Google Scholar 

  38. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou Z, Corden JL, Brown TR . Identification and characterization of a novel androgen response element composed of a direct repeat. J Biol Chem 1997; 272: 8227–8235.

    Article  CAS  PubMed  Google Scholar 

  40. Tao S, He H, Chen Q . ChIP-seq analysis of androgen receptor in LNCaP cell line. Mol Biol Rep 2014; 41: 6291–6296.

    Article  CAS  PubMed  Google Scholar 

  41. Herkert B, Eilers M . Transcriptional repression: the dark side of myc. Genes Cancer 2010; 1: 580–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bush A, Mateyak M, Dugan K, Obaya A, Adachi S, Sedivy J et al. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets. Genes Dev 1998; 12: 3797–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O'Leary M et al. Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 2000; 20: 6008–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao L, Schwartzman J, Gibbs A, Lisac R, Kleinschmidt R, Wilmot B et al. Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS One 2013; 8: e63563.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012; 32: 3018–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 2008; 68: 2132–2144.

    Article  CAS  PubMed  Google Scholar 

  47. Chen SY, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh CL et al. c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation. Oncogene 2006; 25: 7212–7223.

    Article  CAS  PubMed  Google Scholar 

  48. Civenni G, Malek A, Albino D, Garcia-Escudero R, Napoli S, Di Marco S et al. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res 2013; 73: 6816–6827.

    Article  CAS  PubMed  Google Scholar 

  49. Yu C, Yao Z, Dai J, Zhang H, Escara-Wilke J, Zhang X et al. ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo 2011; 25: 69–76.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ze’ev Ronai and members of the Ronai Lab for helpful discussions. We thank Dr Yi Zhang for the human JMJD1A expression plasmids, Dr Genze Shao for the GFP-HUWE1 expression plasmids, Dr William Tansey for the c-Myc expression plasmid and Dr Ze’ev Ronai for the p53 expression plasmid and 5XTRE luciferase reporter. Support by NCI Grant CA154888 (to JQ) and a Merit Review Award Department of Veterans Affairs (to AH) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Qi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Peng, G., Sahgal, N. et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene 35, 2441–2452 (2016). https://doi.org/10.1038/onc.2015.309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.309

This article is cited by

Search

Quick links