Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inhibition of human non-small cell lung tumors by a c-Met antisense/U6 expression plasmid strategy

Abstract

c-Met is a receptor tyrosine kinase whose activation by hepatocyte growth factor (HGF) can lead to transformation and tumorigenicity in a variety of tumors. We investigated the effects of suppressing c-Met protein expression in human non-small cell lung tumors. Expression plasmids containing either sense or antisense sequences of the human c-met gene were constructed under control of the U6 snRNA promoter. A U6 control plasmid was also constructed that did not contain any c-met sequence. These constructs have been examined both in vitro and in an in vivo tumor xenograft model. The c-Met protein was downregulated by 50–60% in two lung cancer cell lines that were transiently transfected with the c-Met antisense versus U6 control. Tumor cells treated with the c-Met antisense construct also show decreased phosphorylation of c-Met and MAP kinase when exposed to exogenous HGF. Lung cancer cells were grown as xenografts in mice and treated by intratumoral liposome-mediated transfer of the c-Met sense, antisense or U6 control plasmids. The treatment of lung tumors with c-Met antisense versus U6 control plasmid resulted in the downregulation of the c-Met protein expression, a 50% decrease in tumor growth over a 5-week treatment period and an increased rate of apoptosis. These results suggest that targeting the HGF/c-Met pathway may be an effective novel strategy to treat lung cancer patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 5
Figure 7
Figure 2
Figure 3
Figure 6
Figure 8

Similar content being viewed by others

References

  1. Cooper CS et al. Amplification and overexpression of the met gene in spontaneously transformed NIH3T3 mouse fibroblasts. EMBO J 1986; 10: 2623–2628.

    Article  Google Scholar 

  2. Park M et al. Sequence of MET proto-oncogene cDNA has features characteristic of the tyrosine kinase family of growth factor receptors. Proc Natl Acad Sci USA 1987; 84: 379–6383.

    Google Scholar 

  3. Bottaro DP et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura T, Nawa K, Ichihara A . Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122: 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  5. Naldini L et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991; 10: 2867–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W . Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 1990; 111: 2097–2108.

    Article  CAS  PubMed  Google Scholar 

  7. Stoker M, Gherardi E, Peryman M, Gray J . Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987; 327: 239–242.

    Article  CAS  PubMed  Google Scholar 

  8. Rosen E et al. Smooth muscle-derived factor stimulates mobility of human tumor cells. Invasion Metas 1990; 10: 49–64.

    CAS  Google Scholar 

  9. Tsao MS et al. Hepatocyte growth factor/scatter factor is an autocrine factor for human normal bronchial epithelial and lung carcinoma cells. Cell Growth Differ 1993; 4: 571–579.

    CAS  PubMed  Google Scholar 

  10. Yoshinaga Y et al. Human lung cancer cell line producing hepatocyte growth factor/scatter factor. Jpn J Cancer Res 1992; 83: 1257–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tokunou M et al. c-MET expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma. Am J Pathol 2001; 158: 1451–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yi S, Tsao MS . Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia 2000; 2: 226–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montesano R, Matsumoto K, Nakamura T, Orci L . Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67: 901–908.

    Article  CAS  PubMed  Google Scholar 

  14. Jeffers M et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 1997; 94: 11445–11450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rong S et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol 1992; 12: 5152–5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Renzo MF et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 2000; 19: 1547–1555.

    Article  CAS  PubMed  Google Scholar 

  17. Lorenzato A et al. Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res 2002; 62: 7025–7030.

    CAS  PubMed  Google Scholar 

  18. Schmidt L et al. Germline and somatic mutations in the tyrosine kinase domain of the met proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.

    Article  CAS  PubMed  Google Scholar 

  19. Qiao H et al. Constitutive activation of met kinase in non-small-cell lung carcinomas correlates with anchorage-independent cell survival. J Cell Biochem 2002; 86: 665–677.

    Article  CAS  PubMed  Google Scholar 

  20. Liang TJ et al. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 1996; 97: 2872–2877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takayama H et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghoussoub RA et al. Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer 1998; 82: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  23. Di Renzo MF et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 1994; 58: 658–662.

    Article  CAS  PubMed  Google Scholar 

  24. Humphrey PA et al. Hepatocyte growth factor and its receptor (c-met) in prostatic carcinoma. Am J Pathol 1995; 147: 386–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pisters LL et al. C-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol 1995; 154: 293–298.

    Article  CAS  PubMed  Google Scholar 

  26. Di Renzo MF et al. Overexpression of the c-met/HGF receptor gene in human thyroid carcinomas. Oncogene 1992; 7: 2549–2553.

    CAS  PubMed  Google Scholar 

  27. Trovato M et al. Expression of the hepatocyte growth factor and c-met in normal thyroid, non-neoplastic, and neoplastic nodules. Thyroid 1998; 8: 125–131.

    Article  CAS  PubMed  Google Scholar 

  28. Di Renzo MF et al. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55: 1129–1138.

    CAS  PubMed  Google Scholar 

  29. Di Renzo MF et al. Overexpression and amplification of the Met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1995; 1: 147–154.

    CAS  PubMed  Google Scholar 

  30. Kaji M et al. Participation of c-met in the progression of human gastric cancers: anti-c-met oligonucleotides inhibit proliferation or invasiveness of gastric cancer cells. Cancer Gene Ther 1996; 3: 393–404.

    CAS  PubMed  Google Scholar 

  31. Nakajima M et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer 1999; 85: 1894–1902.

    Article  CAS  PubMed  Google Scholar 

  32. Koochekpour S et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57: 5391–5398.

    CAS  PubMed  Google Scholar 

  33. Morello S et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J Cell Physiol 2001; 189: 285–290.

    Article  CAS  PubMed  Google Scholar 

  34. Ichimura E, Maeshima A, Nakajima T, Nakamura T . Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 1996; 87: 1063–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yanagita K et al. Hepatocyte growth factor may act as a pumotropic factor on lung regeneration after acute lung injury. J Biol Chem 1993; 269: 21212–21217.

    Google Scholar 

  36. To CT, Tsao MS . The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (Review). Oncol Rep 1998; 5: 1013–1024.

    CAS  PubMed  Google Scholar 

  37. Danilkovitch-Miagkova A, Zbar B . Dysregulation of met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 2002; 109: 863–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Terada T, Nakanuma Y, Sirica AE . Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 1998; 29: 75–80.

    Article  Google Scholar 

  39. Huang TJ et al. Overexpression of the c-met protooncogene in human gastric carcinoma – correlation to clinical features. Acta Oncol 2001; 40: 638–643.

    Article  CAS  PubMed  Google Scholar 

  40. Qian CN et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res 2002; 62: 589–596.

    CAS  PubMed  Google Scholar 

  41. Yamashita J et al. Immunoreactive HGF is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 1994; 54: 1630–1633.

    CAS  PubMed  Google Scholar 

  42. Siegfried JM et al. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res 1997; 57: 433–439.

    CAS  PubMed  Google Scholar 

  43. Harvey P et al. Immunoreactivity for hepatocyte growth factor and its receptor, met, in human lung carcinomas and malignant mesotholioma. J Pathol 1996; 180: 389–394.

    Article  CAS  PubMed  Google Scholar 

  44. Takanami I et al. Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: an evaluation of their expression as prognostic markers. Oncology 1996; 53: 392–397.

    Article  CAS  PubMed  Google Scholar 

  45. Noonberg SB et al. In vivo generation of highly abundant sequence-specific oligonucleotides for antisense and triplex gene regulation. Nucleic Acids Res 1994; 22: 2830–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noonberg SB, Rodeck U, Weinmann R, Herlyn M . Stable transfection of human malignant melanoma cells with basic fibroblast growth factor antisense cDNA. Ann NY Acad Sci 1992; 660: 293–294.

    Article  Google Scholar 

  47. Siegfried JM et al. Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small cell lung cancer. Pulm Pharmacol Ther 1999; 12: 291–302.

    Article  CAS  PubMed  Google Scholar 

  48. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  49. Gao X, Huang L . A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 1991; 179: 280–285.

    Article  CAS  PubMed  Google Scholar 

  50. He Y, Huang L . Growth inhibition of human papillomavirus 16 DNA-positive mouse tumor by antisense RNA transcribed from U6 promoter. Cancer Res 1997; 57: 3993–3999.

    CAS  PubMed  Google Scholar 

  51. He Y et al. Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J Natl Cancer Inst 1998; 90: 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  52. Sauterer RA, Goyal A, Zieve GW . Cytoplasmic assembly of small nuclear ribonucleoprotein particles from 6 S and 20 S RNA-free intermediates in L929 mouse fibroblasts. J Biol Chem 1990; 265: 1048–1058.

    CAS  PubMed  Google Scholar 

  53. Singh-Kaw P, Zarnegar R, Siegfried JM . Stimulatory effects of hepatocyte growth factor on normal and neoplastic human bronchial epithelial cells. Am J Physiol 1995; 268: L1012–L1020.

    CAS  PubMed  Google Scholar 

  54. Kunkel GR, Pederson T . Transcription of a human U6 small nuclear RNA gene in vivo withstands deletion of intragenic sequences but not of an upstream TATATA box. Nucleic Acids Res 1989; 17: 7371–7379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Endo S et al. TGF-alpha antisense gene therapy inhibits head and neck squamous cell carcinoma growth in vivo. Gene Ther 2000; 7: 1906–1914.

    Article  CAS  PubMed  Google Scholar 

  56. Grandis JR et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA 2000; 97: 4227–4232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hyde SC et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 2000; 7: 1156–1165.

    Article  CAS  PubMed  Google Scholar 

  58. Hortobagyl GN et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 2001; 19: 4183–4184.

    Article  Google Scholar 

  59. Villaret D et al. A multicenter phase II study of tgDCC-E1A for the intratumoral treatment of patients with recurrent head and neck squamous cell carcinoma. Head Neck 2002; 24: 661–669.

    Article  PubMed  Google Scholar 

  60. Webb CP et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 2000; 60: 342–349.

    CAS  PubMed  Google Scholar 

  61. Maulik G et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002; 8: 620–627.

    CAS  PubMed  Google Scholar 

  62. Bardelli A et al. A peptide representing the carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth. J Biol Chem 1999; 274: 29274–29281.

    Article  CAS  PubMed  Google Scholar 

  63. Abounader R et al. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst 1999; 91: 1548–1556.

    Article  CAS  PubMed  Google Scholar 

  64. Abounader R et al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J 2002; 16: 108–110.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang WG et al. A hammerhead ribozyme suppresses expression of hepatocyte growth factor/scatter factor receptor c-Met and reduces migration and invasiveness of breast cancer cells. Clin Cancer Res 2001; 7: 2555–2562.

    CAS  PubMed  Google Scholar 

  66. Atabey N et al. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J Biol Chem 2001; 276: 14308–14314.

    Article  CAS  PubMed  Google Scholar 

  67. Sachs M et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150: 1375–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gual P et al. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 2000; 19: 1509–1518.

    Article  CAS  PubMed  Google Scholar 

  69. Nakaigawa N, Weirich G, Schmidt L, Zbar B . Tumorigenesis mediated by MET mutant M1268T is inhibited by dominant-negative Src. Oncogene 2000; 19: 2996–3002.

    Article  CAS  PubMed  Google Scholar 

  70. Morotti A et al. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 2002; 21: 4885–4893.

    Article  CAS  PubMed  Google Scholar 

  71. Baatar D et al. Selective cyclooxygenase-2 blocker delays healing of esophageal ulcers in rats and inhibits ulceration-triggered c-Met/hepatocyte growth factor receptor induction and extracellular signal-regulated kinase 2 activation. Am J Pathol 2002; 160: 963–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen JH, Liu TY, Wu CW, Chi CW . Nonsteroidal anti-inflammatory drugs for treatment of advanced gastric cancer: cyclooxygenase-2 is involved in hepatocyte growth factor mediated tumor development and progression. Med Hypothesis 2001; 57: 503–505.

    Article  CAS  Google Scholar 

  73. Qian LW et al. Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer 2003; 104: 542–549.

    Article  CAS  PubMed  Google Scholar 

  74. Nemunaitis J et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small cell lung cancer. J Clin Oncol 2000; 18: 609–622.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical assistance of John Dileo in the Huang laboratory for supplying the DC-Chol and UPMC Developmental Pathology Lab for their technical assistance with the ApopTag® assay. This work was supported by Grant CA 79882 awarded to JMS and by CA74918 to LH from the National Cancer Institute. LPS was supported by a fellowship from the American Lung Association.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabile, L., Lyker, J., Huang, L. et al. Inhibition of human non-small cell lung tumors by a c-Met antisense/U6 expression plasmid strategy. Gene Ther 11, 325–335 (2004). https://doi.org/10.1038/sj.gt.3302169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302169

Keywords

This article is cited by

Search

Quick links