Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)

Abstract

Interactions between the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) and the cyclin-dependent kinase (CDK) inhibitor flavopiridol (FP) were examined in human leukemia cells. Simultaneous exposure (24 h) of myelomonocytic leukemia cells (U937) to SAHA (1 μM) and FP (100 nM), which were minimally toxic alone (1.5 ± 0.5% and 16.3 ± 0.5% apoptosis respectively), produced a dramatic increase in cell death (ie 63.2 ± 1.9% apoptotic), reflected by morphology, procaspase-3 and -8 cleavage, Bid activation, diminished ΔΨm, and enhanced cytochrome c release. FP blocked SAHA-mediated up-regulation of p21CIP1 and CD11b expression, while inducing caspase-dependent Bcl-2 and pRb cleavage. Similar interactions were observed in HL-60 and Jurkat leukemic cells. Enhanced apoptosis in SAHA/FP-treated cells was accompanied by a marked reduction in clonogenic surivival. Ectopic expression of either dominant-negative caspase-8 (C8-DN) or CrmA partially attenuated SAHA/FP-mediated apoptosis (eg 45 ± 1.5% and 38.2 ± 2.0% apoptotic vs 78 ± 1.5% in controls) and Bid cleavage. SAHA/FP induced-apoptosis was unaffected by the free radical scavenger L-N-acetyl cysteine or the PKC inhibitor GFX. Finally, ectopic Bcl-2 expression marginally attenuated SAHA/FP-related apoptosis/cytochrome c release, and failed to restore clonogenicity in cells exposed to these agents. Together, these findings indicate that SAHA and FP interact synergistically to induce mitochondrial damage and apoptosis in human leukemia cells, and suggest that this process may also involve engagement of the caspase-8-dependent apoptotic cascade.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA . Second generation hybrid polar compounds are potent inducers of transformed cell differentiation Proc Natl Acad Sci USA 1996 93: 5705–5708

    Article  CAS  Google Scholar 

  2. Candido EP, Reeves R, Davie JR . Sodium butyrate inhibits histone deacetylation in cultured cells Cell 1978 14: 105–113

    Article  CAS  Google Scholar 

  3. Dangond F, Gullans SR . Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate Biochem Biophys Res Commun 1998 247: 833–837

    Article  CAS  Google Scholar 

  4. Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE . Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report Blood 2001 98: 2865–2868

    Article  CAS  Google Scholar 

  5. Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O, Trepel JB, Kim SJ . MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells Cancer Res 2001 61: 931–934

    CAS  PubMed  Google Scholar 

  6. Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C, Thaler HT, Rifkind RA, Marks PA, Richon VM . Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo Cancer Res 2000 60: 5165–5170

    CAS  PubMed  Google Scholar 

  7. McKinsey TA, Zhang CL, Lu J, Olson EN . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation Nature 2000 408: 106–111

    Article  CAS  Google Scholar 

  8. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation Proc Natl Acad Sci USA 2000 97: 10014–10019

    Article  CAS  Google Scholar 

  9. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S . Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53 Oncogene 1999 18: 7016–7025

    Article  CAS  Google Scholar 

  10. Marks PA, Rifkind RA, Richon VM, Breslow R . Inhibitors of histone deacetylase are potentially effective anticancer agents Clin Cancer Res 2001 7: 759–760

    CAS  PubMed  Google Scholar 

  11. Sedlacek HH . Mechanisms of action of flavopiridol Crit Rev Oncol Hematol 2001 38: 139–170

    Article  CAS  Google Scholar 

  12. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ . Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells Cancer Res 1996 56: 2973–2978

    CAS  PubMed  Google Scholar 

  13. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R, Sausville E . Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275 J Natl Cancer Inst 1992 84: 1736–1740

    Article  CAS  Google Scholar 

  14. Senderowicz AM . Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies Leukemia 2001 15: 1–9

    Article  CAS  Google Scholar 

  15. Bible KC, Kaufmann SH . Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells Cancer Res 1996 56: 4856–4861

    CAS  PubMed  Google Scholar 

  16. Senderowicz AM . Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials Invest New Drugs 1999 17: 313–320

    Article  CAS  Google Scholar 

  17. Stinson SF, Hill K, Siford TJ, Phillips IR, Daw TW . Determination of flavopiridol (L868175; NSC 649890) in human plasma by reversed phase liquid chromatography with electrochemical detection Cancer Chem Pharmacol 1998 42: 261–265

    Article  CAS  Google Scholar 

  18. Bible KC, Kaufmann SH . Cytotoxic synergy between flavopiridol (NSC 649890, L86–8275) and various antineoplastic agents: the importance of sequence of administration Cancer Res 1997 57: 3375–3380

    CAS  PubMed  Google Scholar 

  19. Cartee L, Wang Z, Decker RH, Chellappan SP, Fusaro G, Hirsch KG, Sankala HM, Dent P, Grant S . The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells Cancer Res 2001 61: 2583–2591

    CAS  PubMed  Google Scholar 

  20. Wang S, Vrana JA, Bartimole TM, Freemerman AJ, Jarvis WD, Kramer LB, Krystal G, Dent P, Grant S . Agents that down-regulate or inhibit protein kinase C circumvent resistance to 1-β-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress Bcl-2 Mol Pharmacol 1997 52: 1000–1009

    Article  CAS  Google Scholar 

  21. Wang Z, Van Tuyle G, Conrad D, Fisher PB, Dent P, Grant S . Dysregulation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1/MDA6 increases the susceptibility of human leukemia cells (U937) to 1-beta-D-arabinofuranosylcytosine-mediated mitochondrial dysfunction and apoptosis Cancer Res 1999 15: 1259–1267

    Google Scholar 

  22. Vrana JA, Grant S . Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade Blood 2001 97: 2105–2114

    Article  CAS  Google Scholar 

  23. Freemerman AJ, Vrana JA, Tombes RM, Jiang H ., Chellappan SP, Fisher PB, Grant S. Effects of antisense p21 (WAF1/CIP1/MDA6) expression on the induction of differentiation and drug-mediated apoptosis in human myeloid leukemia cells (HL-60) Leukemia 1997 11: 504–513

    Article  CAS  Google Scholar 

  24. Tang L, Boise LH, Dent P, Grant S . Potentiation of 1-beta-D-arabinofuranosylcytosine-mediated mitochondrial damage and apoptosis in human leukemia cells (U937) overexpressing bcl-2 by the kinase inhibitor 7-hydroxystaurosporine (UCN-01) Biochem Pharmacol 2000 60: 1445–1456

    Article  CAS  Google Scholar 

  25. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of Bcl-2 to a Bax-like death effector by caspases Science 1997 278: 1966–1968

    Article  CAS  Google Scholar 

  26. Fattman CL, Delach SM, Dou QP, Johnson DE . Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 during etoposide-induced apoptosis Oncogene 2001 20: 2918–2926

    Article  CAS  Google Scholar 

  27. Rosato RR, Wang Z, Gopalkrishnan RV, Fisher PB, Grant S . Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937) Int J Oncol 2001 19: 181–191

    CAS  PubMed  Google Scholar 

  28. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM . Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis J Biol Chem 1999 274: 5053–5060

    Article  CAS  Google Scholar 

  29. Wang S, Wang Z, Boise L, Dent P, Grant S . Loss of the bcl-2 phosphorylation loop domain increases resistance of human leukemia cells (U937) to paclitaxel-mediated mitochondrial dysfunction and apoptosis Biochem Biophys Res Commun 1999 259: 67–72

    Article  CAS  Google Scholar 

  30. Achenbach TV, Muller R, Slater EP . Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release J Biol Chem 2000 275: 32089–32097

    Article  CAS  Google Scholar 

  31. Yin DX, Schimke RT . BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells Cancer Res 1995 55: 4922–4928

    CAS  PubMed  Google Scholar 

  32. Decker RH, Dai Y, Grant S . The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway Cell Death Differ 2001 8: 715–724

    Article  CAS  Google Scholar 

  33. Hoffman DR, Huberman E . The control of phospholipid methylation by phorbol diesters in differentiating human myeloid HL-60 leukemia cells Carcinogenesis 1982 3: 875–880

    Article  CAS  Google Scholar 

  34. Gore SD, Samid D, Weng LJ . Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells Clin Cancer Res 1997 3: 1755–1762

    CAS  PubMed  Google Scholar 

  35. Selvakumaran M, Reed JC, Liebermann D, Hoffman B . Progression of the myeloid differentiation program is dominant to transforming growth factor-beta 1-induced apoptosis in M1 myeloid leukemic cells Blood 1994 84: 1036–1042

    CAS  PubMed  Google Scholar 

  36. Meinhardt G, Roth J, Hass R . Activation of protein kinase C relays distinct signaling pathways in the same cell type: differentiation and caspase-mediated apoptosis Cell Death Differ 2000 7: 795–803

    Article  CAS  Google Scholar 

  37. Wang Z, Su ZZ, Fisher PB, Wang S, VanTuyle G, Grant S . Evidence of a functional role for the cyclin-dependent kinase inhibitor p21(WAF1/CIP1/MDA6) in the reciprocal regulation of PKC activator-induced apoptosis and differentation in human myelomonocytic leukemia cells Exp Cell Res 1998 244: 105–116

    Article  CAS  Google Scholar 

  38. Asada M, Yamada T, Fukumuro K, Mizutani S . p21Cip1/WAF1 is important for differentiation and survival of U937 cells Leukemia 1998 12: 1944–1950

    Article  CAS  Google Scholar 

  39. Wang J, Walsh K . Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation Science 1996 273: 359–361

    Article  CAS  Google Scholar 

  40. Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, Mizutani S . Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation EMBO J 1999 18: 1223–1234

    Article  CAS  Google Scholar 

  41. Archer SY, Meng S, Shei A, Hodin RA . p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells Proc Natl Acad Sci USA 1998 95: 6791–6796

    Article  CAS  Google Scholar 

  42. Bible KC, Bible RH Jr, Kottke TJ, Svingen PA, Xu K, Pang YP, Hajdu E, Kaufmann SH . Flavopiridol binds to duplex DNA Cancer Res 2000 60: 2419–2428

    CAS  PubMed  Google Scholar 

  43. Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH . Flavopiridol inhibits P-TEFb and blocks HIV-1 replication J Biol Chem 2000 275: 28345–28348

    CAS  PubMed  Google Scholar 

  44. Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD . Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway Cancer Res 1997 57: 3697–3707

    CAS  PubMed  Google Scholar 

  45. Zou H, Li Y, Liu X, Wang X . An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 J Biol Chem 1999 274: 11549–11556

    Article  CAS  Google Scholar 

  46. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death J Biol Chem 1999 274: 1156–1163

    Article  CAS  Google Scholar 

  47. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW . The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species Proc Natl Acad Sci USA 2001 98: 10833–10838

    Article  CAS  Google Scholar 

  48. Cheng Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ . BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis Mol Cell 2001 3: 705–711

    Article  Google Scholar 

  49. Costantini P, Jacotot E, Decaudin D, Kroemer G . Mitochondrion as a novel target of anticancer chemotherapy J Natl Cancer Inst 2000 92: 1042–1053

    Article  CAS  Google Scholar 

  50. Rosato RR, Almenara JA, Cartee L, Betts V, Chellappan SP, Grant S . The cyclin-dependent kinase inhibitor flavopiridol disrupts butyrate-induced p21CIP1 expression and maturation while enhancing apoptosis in human myeloid leukemia cells MolCancer Ther 2002 1: 253–266

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by awards CA 63753 and CA 83705 from the NIH, and award 6630–01 from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almenara, J., Rosato, R. & Grant, S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 16, 1331–1343 (2002). https://doi.org/10.1038/sj.leu.2402535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402535

Keywords

This article is cited by

Search

Quick links