Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells

Abstract

Interactions between the small molecule Bcl-2 inhibitor HA14-1 and proteasome inhibitors, including bortezomib (Velcade™; formerly known as PS-341) and MG-132, have been examined in human multiple myeloma cells. Sequential (but not simultaneous) exposure of MM.1S cells to bortezomib or MG-132 (10 h) followed by HA14-1 (8 h) resulted in a marked increase in mitochondrial injury (loss of ΔΨm, cytochrome c, Smac/DIABLO, and apoptosis-inducing factor release), activation of procaspases-3, -8, and -9, and Bid, induction of apoptosis, and loss of clonogenicity. Similar interactions were observed in U266 and MM.1R dexamethasone-resistant myeloma cells. These events were associated with Bcl-2 cleavage, Bax, Bak, and Bad accumulation, mitochondrial translocation of Bax, abrogation of Mcl-1, Bcl-xL, and XIAP upregulation, and a marked induction of JNK and p53. Bortezomib/HA14-1 treatment triggered an increase in reactive oxygen species (ROS), which, along with apoptosis, was blocked by the free radical scavenger N-acetyl-L-cysteine (L-NAC). L-NAC also opposed bortezomib/HA14-1-mediated JNK activation, upregulation of p53 and Bax, and release of cytochrome c and Smac/DIABLO. Finally, bortezomib/HA14-1-mediated apoptosis was unaffected by exogenous IL-6. Together, these findings indicate that sequential exposure of myeloma cells to proteasome and small molecule Bcl-2 inhibitors such as HA14-1 may represent a novel therapeutic strategy in myeloma.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  2. Schimmer AD, Hedley DW, Penn LZ, Minden MD . Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood 2001; 98: 3541–3553.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X . The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15: 2922–2933.

    CAS  PubMed  Google Scholar 

  4. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  PubMed  Google Scholar 

  5. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 45–53.

    Article  Google Scholar 

  6. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    Article  CAS  PubMed  Google Scholar 

  7. Igney FH, Krammer PH . Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–288.

    Article  CAS  PubMed  Google Scholar 

  8. Cory S, Adams JM . The Bcl-2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–711.

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez-Puente Y, Zapata-Benavides P, Tari AM, Lopez-Berestein G . Bcl-2-related antisense therapy. Semin Oncol 2002; 29: 71–76.

    Article  CAS  PubMed  Google Scholar 

  11. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000; 97: 7124–7129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dalton WS, Bergsagel PL, Kuehl WM, Anderson KC, Harousseau JL . Multiple myeloma. Hematology 2001, 157–177.

  13. Strasser K, Ludwig H . Thalidomide treatment in multiple myeloma. Blood Rev 2002; 16: 207–215.

    Article  PubMed  Google Scholar 

  14. Anderson KC, Boise LH, Louie R, Waxman S . Arsenic trioxide in multiple myeloma: rationale and future directions. Cancer J 2002; 8: 12–25.

    Article  PubMed  Google Scholar 

  15. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  16. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101: 1530–1534.

    Article  CAS  PubMed  Google Scholar 

  17. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adams J . Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 2002; 8: S49–S54.

    Article  CAS  PubMed  Google Scholar 

  19. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000.

    CAS  PubMed  Google Scholar 

  20. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20: 4420–4427.

    Article  CAS  PubMed  Google Scholar 

  21. An B, Goldfarb RH, Siman R, Dou QP . Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998; 5: 1062–1075.

    Article  CAS  PubMed  Google Scholar 

  22. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101: 2377–2380.

    Article  CAS  PubMed  Google Scholar 

  23. Moalli PA, Pillay S, Weiner D, Leikin R, Rosen ST . A mechanism of resistance to glucocorticoids in multiple myeloma: transient expression of a truncated glucocorticoid receptor mRNA. Blood 1992; 79: 213–222.

    CAS  PubMed  Google Scholar 

  24. Dai Y, Yu C, Singh V, Tang L, Wang Z, McInistry R et al. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 2001; 61: 5106–5115.

    CAS  PubMed  Google Scholar 

  25. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S . Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood 2002; 100: 3333–3343.

    Article  CAS  PubMed  Google Scholar 

  26. Leach JK, Tuyle GV, Lin PS, Schmidt-Ullrich R, Mikkelsen RB . Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61: 3894–3901.

    CAS  PubMed  Google Scholar 

  27. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  28. Ao Y, Rohde LH, Naumovski L . p53-interacting protein 53BP2 inhibits clonogenic survival and sensitizes cells to doxorubicin but not paclitaxel-induced apoptosis. Oncogene 2001; 20: 2720–2725.

    Article  CAS  PubMed  Google Scholar 

  29. Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 1999; 274: 21155–21161.

    Article  CAS  PubMed  Google Scholar 

  30. An WG, Hwang SG, Trepel JB, Blagosklonny MV . Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000; 14: 1276–1283.

    Article  CAS  PubMed  Google Scholar 

  31. Gross A, McDonnell JM, Korsmeyer SJ . BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  32. Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH . Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 2001; 98: 805–813.

    Article  CAS  PubMed  Google Scholar 

  33. Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001; 98: 13681–13686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frassanito MA, Cusmai A, Iodice G, Dammacco F . Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001; 97: 483–489.

    Article  CAS  PubMed  Google Scholar 

  35. Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC . Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 2001; 28: 607–612.

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Freeman A, Liu J, Dai Q, Lee RM . The apoptotic effect of HA14-1, a Bcl-2-molecular compound, requires Bax translocation and is enhanced by PK11195. Mol Cancer Ther 2002; 1: 961–967.

    PubMed  Google Scholar 

  37. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH . Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 1992; 89: 3170–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Breitschopf K, Zeiher AM, Dimmeler S . Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 2000; 275: 21648–21652.

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Dou QP . Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 2000; 97: 3850–3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chadebech P, Brichese L, Baldin V, Vidal S, Valette A . Phosphorylation and proteasome-dependent degradation of Bcl-2 in mitotic-arrested cells after microtubule damage. Biochem Biophys Res Commun 1999; 262: 823–827.

    Article  CAS  PubMed  Google Scholar 

  41. Mahyar-Roemer M, Roemer K . p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene 2001; 20: 3387–3398.

    Article  CAS  PubMed  Google Scholar 

  42. Xiang H, Fox JA, Totpal K, Aikawa M, Dupree K, Sinicropi D et al. Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors. Oncogene 2002; 21: 3611–3619.

    Article  CAS  PubMed  Google Scholar 

  43. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T . Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 2000; 20: 7311–7318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288: 870–874.

    Article  CAS  PubMed  Google Scholar 

  45. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N et al. JNK-dependent release of mitochondrial protein, SMAC during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003; 278: 17593–17596.

    Article  CAS  PubMed  Google Scholar 

  46. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 3: 577–590.

    Article  Google Scholar 

  47. Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF, Buhimschi IA et al. BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep 2001; 6: 351–362.

    Article  CAS  PubMed  Google Scholar 

  48. Lezoualc'h F, Sagara Y, Holsboer F, Behl C . High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 1998; 18: 3224–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–16647.

    Article  CAS  PubMed  Google Scholar 

  50. Konopleva M, Tari AM, Estrov Z, Harris D, Xie Z, Zhao S et al. Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 2000; 95: 3929–3938.

    CAS  PubMed  Google Scholar 

  51. van de Donk NW, Kamphuis MM, van Dijk M, Borst HP, Bloem AC, Lokhorst HM . Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein. Leukemia 2003; 17: 211–219.

    Article  CAS  PubMed  Google Scholar 

  52. Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young DC et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003; 101: 425–432.

    Article  CAS  PubMed  Google Scholar 

  53. Morris MJ, Tong WP, Cordon-Cardo C, Drobnjak M, Kelly WK, Slovin SF et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002; 8: 679–683.

    CAS  PubMed  Google Scholar 

  54. Liu Q, Gazitt Y . Potentiation of dexamethasone, taxel, and Ad-p53-induced apoptosis by Bcl-2 anti-sense oligodeoxynucleotides in drug-resistant multiple myeloma cells. Blood 2003; 101: 4105–4114.

    Article  CAS  PubMed  Google Scholar 

  55. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3: 173–182.

    Article  CAS  PubMed  Google Scholar 

  56. Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3464.

    Article  CAS  PubMed  Google Scholar 

  57. Nimmanapalli R, O'Bryan E, Kuhn D, Yamaguchi H, Wang HG, Bhalla KN . Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-xL, and Bax downstream of 17-AAG-mediated downregulation of Akt, Raf-1 and Src kinases. Blood 2003; 102: 269–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by awards CA63753, CA 100866, and CA93738 from the NIH, and award 6045-03 from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, XY., Dai, Y. & Grant, S. The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17, 2036–2045 (2003). https://doi.org/10.1038/sj.leu.2403109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403109

Keywords

This article is cited by

Search

Quick links